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ABSTRACT

Let K[G] denote the group algebra of the finite group G over the non-
absolute field K of characteristic # 2, and let *: K[G] - K[G] be the
K-involution determined by g* = g~! for all ¢ € G. In this paper, we
study the group Y = Y(K[G]) of unitary units of K[G] and we classify
those groups G for which { contains no nonabelian free group. If K is
algebraically closed, then this problem can be effectively studied via the
representation theory of K{G]. However, for general fields, it is preferable
to take an approach which avoids having to consider the division rings
involved. Thus, we use a result of Tits to construct fairly concrete free
generators in numerous crucial special cases.

* The first author’s research was supported in part by Capes and Fapesp - Brazil.

** The second author’s research was supported in part by NSF Grant DMS-9224662.
Received April 10, 2000

131



132 J. Z. GONGCALVES AND D. S. PASSMAN Isr. J. Math.

§1. Preliminaries

For convenience, we say that an arbitrary group & is 2-related if it contains no
nonabelian free subgroup. Thus & is 2-related if and only if every homomorphism
from the 2-generator free group §- into & has a nontrivial kernel and hence if and
ounly if every two elements of & are related, that is satisfy a nontrivial word in
$2. Obviously, the property of being 2-related is closed under taking subgroups
and homomorphic images.

Now let R be a ring with involution *. A unit 4 € R is said to be unitary if
wu* = u*u = 1 and we denote by 4U(R) the multiplicative group of all unitary
units of R. If R is a K-algebra, we assume that * is a K-involution, that is it
acts trivially on K.

LEMMA 1.1: Let R be a ring with involution *.
(i) If S is a *-stable subring or direct summand of R, then {(S) embeds iso-
morphically into U{R). In particular, if {(R) is 2-related, then so is $4(S).
(if) Assume that R is a K-algebra with char K # 2 and let S = R/I where I
is a x-stable nil ideal of R. Then every unitary unit of S lifts to one of R.
In particular, $1(S) is a homomorphic image of U(R).
(iii) Let S = R/I be as in (ii). IfU(R) is 2-related, then so is U(S). Furthermore,
the converse holds if char K > 2.

Proof: Part (i) is clear. For (ii), let @ be a unitary unit of S = R/I and, since I is
a nil ideal of R, let u be a unit of R which maps to 4. Then u* maps to 4*, so uu*
maps to ua* = 1. In other words, uu* = 1+ = where z is a *-symmetric element
of I, since uu™ is *-symmetric. By assumption, z is nilpotent. If char K = p > 0,
then 1 + z is a unit of order p™ for some n and hence it has finite odd order. It
follows that 1 + z has a square root 1 + y = (1 + z)* for some integer ¢. On the
other hand, if char K = 0, then 1 + x again has a square root 1 + y obtained by
evaluating the Taylor series for /1 + ( at the nilpotent element z. In both cases,
y is a polynomial in x with zero constant term, so y is nilpotent and *-symmetric.
Thus uu* = 1+ = (1+y)? = (L+y)(1+¥)*, and v = (14 y)~lu is the required
unitary unit of R which maps to «.

Finally, since $1( R) maps onto $(S), we know that if ${(R) is 2-related, then so
is $1(S). Furthermore, the kernel of this map is contained in 1+ I and hence it is
periodic if char K > 2. In particular, any free subgroup of {(R) is disjoint from
the kernel and hence embeds isomorphically into $(S). With this, we see that if
char K > 2 and if 4(S) is 2-related, then so is 4(R). This proves (iii). |

Part (ii) above is false in characteristic 2. As an example, let char K = 2, let R
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be the commutative K-algebra R = K + Kz + Ky where 22 = y? = 2y = yz = 0,
and define * to interchange x and y. Then I = K(z + y) is a x-stable nil ideal
of R and it is easy to see that U(R) = 1 + I, so the image of {(R) in U(R/I) is
1. On the other hand, S = R/I = K + Ks where s is a *-symmetric element of
square 0. Thus #(S) = 1+ Ks is strictly larger than the image of U(R).

The following is a standard Frattini argument.

LEMMA 1.2: Let G be a finite group and let char K # 2. If (K [G]) is 2-related,
then so is {(K[H]) for every subgroup and homomorphic image H of G.

Proof: If H is a subgroup of G, then K[H] is a x-stable subalgebra of K[G], so
Lemma 1.1(i) yields the result.

Now let H = G/N. We proceed by induction on |N|, the result being trivial
if [IN] = 1. Suppose first that there exists a maximal subgroup M of G with
N¢ M. Then MN =G,s0 H=2G/N = MN/N 2 M/(M N N). Now we know
that Y(K[M]) is 2-related and, since |[M N N| < |N|, we conclude by induction
that U(K[H]) is 2-related.

Thus, we can assume that N is contained in all maximal subgroups of G, so N
is contained in the Frattini subgroup of G. Hence N is nilpotent and, if P # 1 is a
Sylow p-subgroup of N, then P is characteristic in N and consequently normal in
G. Furthermore, note that G/N = (G/P)/(N/P) and that |N/P| < |N|. Thus,
by induction, it suffices to show that U(K[G/P}) is 2-related, and there are two
cases here. If p # char K, then K[G/P] is isomorphic to a *-stable algebra direct
summand of K[G], so Lemma 1.1(i) again yields the result. On the other hand,
if p = char K, then the kernel of the natural map K[G] — K[G/P] is a *-stable
nil ideal, and Lemma 1.1(iii) applies. 1

Now if K is an absolute field, that is algebraic over a finite field, then the unit
group of K[G] is locally finite and, in particular, $(K[G]) is 2-related. Thus, it
is reasonable to assume for the remainder of this paper that K is nonabsolute.
In other words, either char K = 0 or char K > 0 and K contains an element
transcendental over its prime subfield. We can now state our main result.

THEOREM 1.3: Let G be a finite group and let K be a nonabsolute field of
characteristic # 2. The unitary unit group S K[G]) is 2-related if and only if
(i) G has a normal Sylow p-subgroup P with p = char K, and we set G = G/P.
By convention, P =1 if char K = 0.
(ii) Either G is abelian or it has an abelian subgroup A of index 2. Furthermore,
if the latter occurs, then either G = Ax (9) is dihedral, or A is an elementary
abelian 2-group.
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Proof of the easy direction: We show here that if G satisfies (1) and (ii) above,
then U(K[G)) is 2-related. Indeed, if F is the algebraic closure of K, then since
U(K[G]) C WF[G)), it clearly suffices to show that U(F[G]) is 2-related. Further-
more, if P is the normal Sylow p-subgroup of G with p = char K, then the kernel
of the natural epimorphism F[G] — F[G/P] is a nil x-stable ideal. Thus, by
Lemma 1.1(iii), it suffices to prove the result for G = G/P. In other words, we
can assume that G = G has order prime to the characteristic of K. Since the
result is clear if G is abelian, we can now assume that G has a normal abelian
subgroup A of index 2 with appropriate properties.

Let x be a nonlinear irreducible character of G. Since |G : A| = 2, it follows
that deg x = 2 and that x vanishes off A. On the other hand, if a € A, then under
either assumption, we see that a is conjugate to a~. Thus x(a) = x(a™!) and
hence x(g) = x(g7?) for all g € G. Next, let X be the irreducible representation
associated with x. Since X¥(F[G]) = Ma(F), it is clear that X¥(A) cannot be
central and also that X(G ~ A) cannot be central. Now, by assumption, either A
consists of elements of square 1, or G A consists of elements of square 1. Thus
in either case, there exists an element g € G with g2 = 1 and X(g) not central. It
follows that X(g) has the two eigenvalues 1 and —1, so det X(g) = —1 and hence
dety # 1.

Finally, let x1,x2,-- ., Xr be all the nonlinear irreducible characters of G with

corresponding centrally primitive idempotents €1, es,..., e, in F[G]. From the
formula, for e; and the fact that x;(g) = x:(¢~!) for all g € G, it follows that
el = ¢; for all i. In particular, if we set g = 1 —e; — ez — -+ — e, then

FIG] = @Y ._,e:F[G] is a x-decomposition of F[G], and hence 4 = U(F[G]) =
[Ti—o i where 4; is the set of units u of the algebra e;F[G] with u*u = e;.
Now eoF[G] is commutative, so certainly {ly is commutative. Furthermore, for
i > 1 we know that ¢; F[G] 2 Ma(F) and that * determines an involution on this
matrix ring over the algebraically closed field F'. If * is simplectic, then it is the
unique symplectic involution on Ms(F), namely the adjoint map. Hence, for all
! = (ei9)* = adj(eig) = (esg™!) det xi(g), so detx; = 1, a
contradiction. Thus * must be orthogonal, so 4; 2 Oz(F), a suitable orthogonal

g € G, we have e;g~

group, and hence 4; is solvable. Consequently, 4 is solvable and contains no
nonabelian free group. |

The more difficult direction of this proof requires the work of the next two
sections. To start with, in section 2, we use a result of Tits to construct fairly
concrete (essentially) free generators in U(K[G]) in certain crucial special cases.
We then use these special cases in section 3, along with a purely group theoretic
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argument, to complete the proof of Theorem 1.3.

§2. Concrete examples

If R is a ring with involution * and if & € R commutes with a*, then certainly
a(a®)™! € U(R) provided, of course, that a, and hence a*, is invertible. If
R is a K-algebra, then it is convenient to introduce a second parameter here.
Specifically if o commutes with ¢* and if k € K, then we write

ur(a) = (k~ a)(k - o) 7" € U(R),

again provided that k — «, and hence k — o*, is invertible.

In this section, we construct concrete unitary units in K[G] using the above
formula, and then apply the result of Tits [T, Proposition 3.12] to show that
these elements (essentially) generate a free group. To start with, let F be a field
with a nonarchimedean valuation v. Then we say that F is locally compact, with
respect to the topology induced by v, if every element of F' has a neighborhood
with compact closure. For example, if v is a complete, discrete valuation and
if the residue class field F' of F is finite, then it is easy to see that F' is locally
compact. For convenience, and to set notation, we state the above mentioned
result in the form we require.

PROPOSITION 2.1. [T]: Let a and b be semisimple elements in GLy,(F), where
F is a locally compact field with nonarchimedean valuation v. Let GL,,(F) act
on the m-dimensional vector space V and writeV = A, ®Ag®DA_. Here A, A,
and A_ are a-stable subspaces of V with dim A}y = dim A_ = 1. Furthermore,
assume that the eigenvalues of a on these three spaces are contained in F and
have valuations which are positive, zero, and negative, respectively. Similarly,
write V = By @ By ® B_ with corresponding properties for the element b. If
A; € B;® By and B; £ A; ® Ao for all i,j € {+,—}, then the nonabelian free
group §» is involved in (a, b).

The conclusion of [T, Proposition 3.12] is actually somewhat stronger than
stated here. Namely, it asserts that there exists an integer s¢ such that for all
s > sp, the image of (a®,b°) in PGL,,(F) is free of rank 2. The eight subspace
noninclusions listed above are usually trivially satisfied when m = 2. In general, if
we let oy denote the projection of V= A, ®A¢BA_onto A, andifa_, B, and
B— are defined similarly, then these assumptions are equivalent to o;3; # 0 and
Bic; # 0 for all 4, j € {+, —}. For obvious reasons, we call these the idempotent
conditions.
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We can now easily construct the locally compact fields we require.

LEMMA 2.2: Let K[G] be given with |G| = n, and suppose that either K = Q is
the field of rationals, or K = Ky(t) is the rational function field in one variable
over some finite prime subfield Ky. Then there exists a field extension F of K,
containing all nth roots of unity, such that F' is locally compact with respect to
the topology induced by a nonarchimedean valuation v. Furthermore,
(i) If K = Q and if ¢ € F is any nth root of 1, then there exist infinitely many
integers k € Z C K such that v(k — €) > 0 and v{k — &) = 0 for all other
0 € F with 6™ = 1.
(i) If K = Ko(t) and if 0 # € € F’', where F' is the finite subfield of F
generated by all nth roots of 1, then there exist infinitely many elements
k € K, which are powers of t, such that v(k —€) > 0 and v(k — 8) =0 for
all other 6 € F'.

Proof: (i) By an elementary special case of Dirichlet’s theorem [I2, Theorem
20.14], we can choose a prime p with p = 1 modn, and let F = Q, denote the
p-adic field. Then F is endowed with a complete, discrete valuation v, and it
has finite residue field F = GF(p). Thus, we know that F is locally compact.
Let ¢: F — F U {oo} denote the place map corresponding to v. Then ¢ yields
a homomorphism from the p-adic integers Z, to F'. Since the polynomial z¥ — z
splits completely and has distinct roots in ', Hensel’s lemma implies that it splits
completely in Z, and that ¢ maps the roots in Z, to those in F. In particular,
since n|(p — 1), we see that Z, contains all nth roots of unity and that they are
mapped by @ in a one-to-one manner to the nth roots of unity in GF(p).

Finally, let € be any nth root of unity in Z,. Then ¢(¢) € GF(p), so there
exist infinitely many integers k € Z C K with (k) = ¢(e). Thus ¢(k —¢) =0
and v(k - €) > 0. On the other hand, if § is an nth root different from ¢, then
©(9) # p(e€) so p(k — &) = p(e) — (&) # 0 and consequently v{k — §) = 0.

(ii) Here K = Ko(t) and we let F' denote the splitting field over Ky of the
polynomial ™ — 1, so that F' is a finite field generated by all nth roots of unity.
Choose v € F' to generate the cyclic multiplicative group of this field, and let
F = F'{(t — v)) 2 K be the field consisting of all Laurent series over F' in
the variable t — 4. Certainly, F' has a complete, discrete valuation v with finite
residue field F’. In particular, F is locally compact. Let ¢: F — F'U{oco} denote
the place map corresponding to v. Then p(t —+) = 0 so ©(t) = +. Since v is a
cyclic generator for the multiplicative group of F’, it follows that each nonzero
element of F’ is an image of infinitely many distinct powers of t.
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Finally, if 0 # ¢ € F’, then we know that there exist infinitely many distinct
powers k =t/ € K with (k) = o(#) = 9/ = € = p(¢). Thus p(k —€) = 0 and
v(k — €) > 0. On the other hand, if § € F’ is different from ¢, then () = 6 #
€ = p(€) so p(k — &) = p(€) — p(d) # 0 and consequently v{k — J) = 0. ]

Recall that if A is a subgroup of G, then there is a natural F[A]-bimodule
projection m4: F[G] — F[A] C F[G] given by 7a(g) = g if g € A and m4(g) =
0 for g € G~ A. Part (i) of the following lemma allows us to easily verify
the idempotent condition in most cases. See [I1] for basic properties of group
representations.

LEMMA 2.3: Let F[G] be given.
(i) Let AaG, let W be an F{A}-module, and let V = W = W ®p4) F[G] be
the induced F|G]-module. If « € F|G] and Va = 0, then Vra(a) = 0.
(ii) Suppose F|G] is semisimple, and let g and h be nonidentity elements of G.
Then there exists an irreducible representation 6 of F|G] with 0(g) # 1 and
6(h) # 1.

Proof: (i) Let T be a transversal for A in G with 1 € T, and write « = ), tog
with oy € F[A]. fw e Wandz € G, then w®z € V,50 0= (w® z)a =
Y (w®at)a,. Note that V =@ >, W ® (2t) and that each W @ («t) is an F[A]-
submodule of V. Thus we must have (w ® xt)a; = 0 for all t € T. In particular,
when ¢ = 1, this yields (w ® z)a; = 0. Consequently, Vo = (Zm W® x)al =0
and ma{a) = @, annihilates V.

(i) Ifh=g"1 lety=1—g,andif h# g~!, takey = (1 —g)(1— h). In either
case, we have v # 0 and, since F[G] is semisimple, there exists an irreducible
representation 8 with 6(v) # 0. Then certainly, 6(1 — g) # 0 and 6(1 — h) # 0.
[ |

Now we list a few crucial special cases. Recall that if & commutes with o*,
then ug(a) = (k — @)(k — a*)~! is a unitary unit. In the following, we use this
formula to construct a pair of unitary units in K[G]. Then we apply Proposition
2.1 to verify that the two elements essentially generate a free group. With one
exception, all the arguments are quite similar.

PROPOSITION 2.4: Let K be a nonabsolute field of characteristic # 2. If G is any
of the groups listed below, then the unitary unit group $(K[G)) is not 2-related.
(1) G = {z) % (y), where (z) is cyclic of odd order prime to the characteristic
of K, {y) is cyclic of odd prime order q, and {y) acts faithfully on {x).
(i) G = (z,y|z¥ =1, y* =1, y lzy = 27, 2" = y?) is a quaternion group of
order 4r, with r > 1 prime to the characteristic of K.
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(iii) G = ({z) x (w)) x {y) where |z| = |y| = 4, |w| = 2, z¥ = zw, and w¥ = 2?w.

(iv) G = A x (y), where A is abelian of odd order prime to char K, and (y) is
a cyclic group of order 4 acting in a fixed point free manner on A.

(v) G is nonabelian, |G| is prime to the characteristic of K, the center of G has
an element z with |z| > 2, and all irreducible representations of G over the
algebraic closure of K have degree at most 2.

Proof: Without loss of generality, we can assume that either K = @ is the field
of rationals, or K = Kj(t) is the rational function field in one variable over some
finite prime subfield Ky. Write n = |G| and let F and v be given by Lemma, 2.2.
Then F contains all nth roots of unity, so it follows from [I1, Corollary 9.15 and
Theorem 10.3] that F' is a splitting field for K[G]. In other words, all irreducible
representations X of F[G] are maps to full matrix rings over F'. Furthermore, if
g € G, then all eigenvalues of X(g) are contained in F.

Observe that, by assumption, n is prime to the characteristic of K in all cases
expect possibly in part (i) when ¢ = char K. Thus, we split the part (i) argument
in half, to deal separately with these two possibilities.

(i') Here we assume that g # char K. Write z¥ = z" for some integer r and let
X: {x) — F* be a faithful linear character. In particular, if A(z) = ¢, then || = |z|
is odd. Furthermore, X¥'(z) = A(z¥') = /\(x"i) =€ =i, 50 €0, €1, .. ., €q—1 are
distinct, and consequently A, AY, ..., A" are all distinct. Note also that € has
odd order and the automorphism of {¢) given by ¢ — € has odd order g, so no
ei_l can equal an ¢;. Using Lemma 2.2, choose ko € K for ¢ and k; € K for €;.
Since there are infinitely many possible choices for these elements of K, we can
assume that ko — z and k; — z~! are invertible in K[G]. Furthermore, since z
commutes with * = ™!, we can set a = uy, (z)ug, (1) € WK[G]).

Next, let § be an element of order ¢ in F and, by Lemma 2.2, choose £ € K
corresponding to §. Since there are infinitely many such choices, we can assume
that £ — y is invertible in K[G], and we set b = u,(y).

We claim that {(a,b) involves and hence contains a nonabelian free group. To
this end, if §: F[G] — Mq(F) is the induced representation 6 = A®, then we show
that @ = f(a) and b = 8(b) satisfy the hypotheses of Proposition 2.1. First note
that 7 = 6(z) = diag(eo, €1, ...,€4—1), 50 G is diagonal with its ith entry given by
ko — € ‘kl—ei_l
1

i —

ko —€; k1—¢

By Lemma 2.2, the choice of ky and k1, and the fact that ¢ 14 €;, we see that
v(ao) > 0, v(@1) < 0, and v(a@;) = 0 otherwise.
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Next, since 6 = \C, it follows that

1

and hence, since g # char K, we see that 7 is similar to diag(1,4,42,...,8971).

Consequently, b is similar to diag(@o, bi,..., bg—1) where

L
b= 57—

Since both § and 8! occur as eigenvalues of §, Lemma 2.2 implies that v(b1) > 0,
v(bg—1) < 0, and v(b;) = 0 otherwise.

Finally, note that the idempotents associated with the plus and minus spaces
for @ are the same as those for Z, so we can write them as &4 = 6(ay) and
a_ = 0(a_), where a; and «_ are primitive idempotents in F[(z)]. Similarly,
the idempotents associated with the plus and minus spaces of b can be written
as By = 0(By) and B_ = 6(B_), where B; and B_ are primitive idempotents of
F[{y)]. In particular, the identity coeflicients of 8, and S_ are both equal to
1/q. Hence if a € F[(z))] is either of the two idempotents for a and if 8 € F[(y)]
is either of the two idempotents for b, then m4(aB) = 74{fa) = a/q, where we
set A = (z) aG. It follows that af # 0 and Ba& # 0. Indeed, if say &f = 0, then
af annihilates the induced module associated with the representation § = A%,
and then Lemma 2.3(i) implies that 74 (@) = a/q acts trivially, a contradiction.
We can now conclude from Proposition 2.1 that (a,b) contains a free group of
rank 2, and consequently so does Y(K[G]) D {a,b).

(i) Now let ¢ = char K. Since (y) acts nontrivially on (), it acts nontrivially
on some Sylow p-subgroup of (z). Thus, without loss of generality, we can assume
that z is a p-element. But p # ¢, so this action is necessarily fixed point free,
and each nonidentity (y)-orbit on {z) has ¢ elements. In particular, (y) acts
nontrivially on the subgroup of {x) of order p, and again without loss of generality,
we can assume that z has order p.

Note that the {y)-orbits in () are the conjugacy classes of G contained in ().
Let x; € K[G] denote the class sum for the conjugates of z, and let k-1 € K[G]
denote the class sum for the conjugates of z7*. Then kyk,-1 = ql + Y, ¢,k
where z runs through a set of representatives for the nonidentity G-conjugacy
classes (z}. If we think of the ¢,, for the moment, as nonnegative integers which



140 J. Z. GONCALVES AND D. S. PASSMAN Isr. J. Math.

count the multiplicity of the group element z in the product, then counting
elements yields ¢> = ¢+ )., c.q and hence ¢ = 1+ 3__c,. Thus, there are
nonzero c,s, and each is less than ¢q. Hence, ¢, # 0 mod g for some z, and 0 #
Kzkz-1 € K[G). Indeed, 0 # k,r,-1 € K[{z)], so this element is not nilpotent,
and there exists an irreducible representation 8 of F[G] with 8(kgyk,-1) # 0. But,
Kzkg-1 18 central, so 8(kzk,-1) = fI with 0 # f € F. Furthermore, since kgf;—1
is a sum of commuting elements of order p, we see that f € F’, the subfield of F
given by Lemma 2.2(1i).

Let A: () — F** be an irreducible constituent of the restriction of 8 to F[{z)].
If A =1, then certainly A(kzk;-1) = 0, a contradiction. Thus A # 1 and, since
(x) is cyclic of prime order, we see that A is faithful. The argument of (i) now
shows that A, AY, ..., A7 are distinct, so # = A¢. In addition, we can choose
appropriate elements ko, k1 € K so that if a = ug, (z)ug, (z71) € Y(K[G]), then
a = 0(a) = diag(ao, a1, . ..,aq—1) with v(ag) > 0, v(a1) < 0, and with »(a;) =0
otherwise. Next, let Y = 1+ y +---+y?"! € K[G]. Then, as is well known,
y'Y =Yy =Y so Y? = ¢gY = 0. Furthermore, if 1 # z € (z), then

q-1 q-1 q-1
Y2Y = Z Yoy = ZYy_izyi = YZy_izyi =Yk,,
=0 =0 =0

and consequently, Y F[G]Y C Y Z, where Z is the center of F[G]. Now if y = zY,
then v* =Y*2* =Yz !, s0y*y=Yz lz¥ = Y2 =0and yv* =zYYz ! = 0.
In particular, if 8 = ky-17 = ky-12Y, then 8*8 = BB8* = 0 and, by Lemma
2.2, we can choose k € K for the element f € F’ so that k¥ — f is invertible in
K[G). Then b = ut(B) € WK][G)), and we claim that & and b = §(b) satisfy the
hypotheses of Proposition 2.1.

To this end, first note that 8(8) # 0, by Lemma 2.3(i), since 74(8) = kz-12
acts nontrivially in this representation. Next, since YzY = Y k,, we have

B2 = K12V Ky 1Y = Ky 1ZY Kg-1Kg = Kig-16gf3,

and hence 0(8)? = 0(ky-1£,)0(8) = f6(8). In other words, #(3)/f is a nonzero
idempotent in My(F). Furthermore, Y F[G]Y C Y Z implies that SF[G]8 C Z.
Hence 6(8) My(F)8(8) C F6(f), and 6(5)/f is a rank 1 idempotent.

In a similar manner, since 8* = k,Yz !, we see that 6(8*)/f is a rank 1
idempotent and, of course, 85* = 8*f = 0 implies that the two idempotents are
orthogonal. Now b = (k — 8)/(k — B*), so it follows from the above that b = (b)
is similar to the diagonal matrix diag(f, f11, 1,...,1} where f=(k- f/k

and v(f) > 0 by the choice of k. Note that the idempotents corresponding
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to the positive and negative eigenspaces of b are precisely 5, = 6(8)/f and
B = 0(8")/.

Furthermore, there exist idempotents @4+ and a_ in K[{z}] such that a; =
f(ay) and & = B(a_) are the idempotents corresponding to the positive and
negative eigenspaces of a. To show, for example, that &, 3, # 0, it clearly suffices
to prove that @, 6(8) = 0(a4)0(8) = #{a4B) is nonzero. But, recall that the
representation 6 is induced from (z) = A<G, and that m4(8) = k,-1z acts as an
invertible linear transformation. Thus (7 4(a4+8)) = (ayrma(8)) = a4+08(ma(B))
is not zero, and hence by Lemma 2.3(i) neither is &,3,. The remaining seven
idempotent products can clearly be handled in a similar manner, so we conclude
from Proposition 2.1 that (@, b) contains the nonabelian free group F.

(ii) Let A: (x) — F* be a faithful linear character and let § = A€ be the induced
representation 0: F[G] — M2(F). Since |z| > 4, we see that A\Y = A~! # A, and
hence § is irreducible. Furthermore, 8(z) = diag(e,¢~!) for some ¢ € F of order
|z| = 2r and, since 0(y?) = §(z") = diag(~1, —1), it follows that #(y) is similar to
diag(i, —i), where i> = —1. By Lemma 2.2, we can choose k € K corresponding
to € with k — z invertible in K[G], and we can choose ¢ € K corresponding to i
with £ — y invertible in K[G]. We claim that the subgroup of U(K[G]) generated
by @ = ug{z) and b = u,(y) contains a free group of rank 2. Indeed, note that
0(a) = diag(f1, f{'!), where f; = (k — €)/(k — ¢~ !) satisfies v(f;) > 0, and 0(b)
is similar to diag(fs, f5 '), where fo = (£ —14)/(€ + 1) satisfies ¥(f2) > 0. Finally,
if the idempotent condition does not hold, then since m = 2, #(z) and 6(y)
would have a common eigenvector, contradicting the fact that 6 is an irreducible
representation. Thus the idempotent condition is satisfied, and Proposition 2.1
yields the result.

(iii) First note that (zy)? = y2(y2zy?)(y " '2y) = ¥’z low = y?w # 1 and
that (zy)* = (y*w)? = y*w? = 1. Againlet i € F withi? = —1 and choose k € K
corresponding to %, and with k —y and k — zy both invertible in K[G]. We claim
that the subgroup of 4(K[G]) generated by the units a = ug(y) and b = ug(zy)
contains a free group of rank 2. To this end, let A be the linear character of
A = (z) x (w) given by A(z) = ¢ and A(w) = 1. Then X¥(z) = A(z¥) = Mzw) =1,
Wi(z) = Mz¥') = Az™!) = —i and NW(z) = A(a*’) = Az~lw) = —i. In
particular, if 6: F[G] — M4(F) is the induced representation § = A%, then
6(z) = diag(i, ¢, —t, —i), so

1 7
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Since G can also be written as Ax(zy), we see that both 8(y) and 8(zxy) are similar
to diag(1,4, —1,—i), and therefore both a and b are similar to diag(1, f, 1, f~!)
where f = (k—i)/(k +14). By Lemma 2.2, v(f) > 0 and »(f~!) < 0.

It remains to check the idempotent condition. Here

&y = %[1 +i7M0(y) + i 20(y)? + i30(y),

& = 71+ i8(9) + %) +%0)%,

Be = 311 +i76(ay) +i20(@)? + i0(zy)’),
B = 3[1 + i0(xy) + i20(zy)? + i%6(zy)?,

so it is a simple matter (using computer algebra software) to determine these
matrices and to verify that all appropriate eight products are nonzero. Indeed,
each entry in each product is nonzero, so it suffices to check only the (1, 1)-entry.
With this, Proposition 2.1 yields the result.

(iv) By assumption, (y?) acts fixed point free on the abelian group A of odd
order. Hence y? must act in a dihedral manner on A. In particular, if y: A — F*

is any linear character, then uy2 = p~1 and ker uyz =kerp~!

= ker pr. Note also
that (y) acts fixed point freely on the nonprincipal linear characters of A.

Now let A be a fixed nonprincipal linear character of A, so that A, AY, /\92, A
are all distinct. If ker A = ker AY, then all four characters have the same kernel.
In particular, if we choose x € A to generate the cyclic quotient A/(ker A),
then the four values AY (z) must be distinct. Thus, setting 6 = A%, we see
that 8(x) = diag(e, e 1,8,61) with all eigenvalues distinct. On the other hand,
if ker A # ker AY, then we can take £ € ker AY “ker A. In this case, 6(x) =
diag(e,e™*,1,1) with € # ¢!, Thus in either case, we have an element z € A
satisfying 6(z) = diag(e,e1,4,071) with € # ¢71,8,6 1. Now, by Lemma 2.2, let
k € K correspond to € with k—z invertible in K[G], and set a = ug(z) € U(K[G]).
Then 6(a) = diag(@i,a ', s, a; ') with »(a;) > 0 and v(as) = 0.

Of course, A(y) is similar to diag(i, —4,1,—1) where i? = —1. Soif £ € K
corresponds to i, then b = u,(y) € U(K[G]), and we see that 6(b) is similar to
diag(b,b~1,1,1) with v(b) > 0. Since # is induced from A and since a € K[A],
Lemma 2.3(i) implies, as usual, that the idempotent condition is satisfied. We
therefore conclude from Proposition 2.1 that (f(a),6(b)) contains a nonabelian
free group, and hence the same is true of U(K[G)).

(v) Choose z,y € G with commutator w = [x,y] # 1. It clearly suffices to
assume that G = (z,y,2). Since w, 2% # 1, it follows from Lemma 2.3(ii) that
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there exists an irreducible representation 6 of F[G] with 8(w) # 1 and §(2?) # 1.
Note that [6(z), 0(y)] = 8(w) # 1, so 6(x) and 6(y) are not central. In particular,
deg® > 1 and consequently, by assumption and the fact that F' is a splitting
field for K[G], we have degf = 2 and 0: F[G] — Mz(F'). Write 0(z) = diag(9, 6).
Since 8(2%) # 1, we know that 62 # 1, so the three elements 1, §, and 6~ are
distinct.

For convenience, let us assume that 6(z) is diagonal. Say 6(x) = diag(e], €5)
with €] # €} since 6(z) is not central. Now 1,8, 67! are distinct, so we can choose
i = 0,41 so that if z; = z2*, then 8(x;) = diag(e1, €;) with ¢; # £1. Similarly,
there exists 1o = x27 so that 8(z2) = diag(és,€2) with €3 # £1. If & = 61_1,
let @ = ug, (z1) where k; € K corresponds to €;. If € # 6;1 but & = 651,
let @ = ug,(z2) where ko € K corresponds to ep. Finally, if & # 61_1 and
€2 # e{l, take @ = ug, (z1)ug,(z2) " where k; € K corresponds to €; and ky € K
corresponds to 5. In all cases, we see that a € U(K{G)]), and 0(a) = diag(c, as)
with v(a;) > 0 and v{as) < 0.

In a similar manner, by temporarily diagonalizing 6(y), we construct a unit
b € YU(K|[G]) determined by y and z. Note that the eigenspaces of §(a) are those
of 6(z), and the eigenspaces of #(b) are those of 6(y). Thus, if #(a) and 8(b) have
a common eigenspace, then this would yield a subspace stable under the action
of G = {z,y, 2), contradicting the fact that 8 is irreducible. Therefore, since
m = 2, the idempotent condition for #(a) and 8(b) is satisfied, and we conclude
from Proposition 2.1 that the free group §» is involved in {a,b). ]

We need two more concrete examples. For these, we must first briefly discuss
GLy(K) and O3(K), where O3(K) is the set of 3 x 3 matrices X with XTX =
I. In other words, O3(K) is the unitary group (really the orthogonal group)
corresponding to the transpose involution. The following is well known.

LEMMA 2.5: Let K be a nonabsolute field of characteristic # 2. Then GLa(K)

and O3(K) contain nonabelian free groups.

Proof: Let G be the quaternion group of order 8. Then
KiGl=Ke KoK &K ®Q(K)

where Q(K) is the usual quaternion algebra with K-basis {1, 4, j, k} and relations
i2=32=k¥=—1,ij =k, jk =1 and ki = j. Since Y(K[G]) is not 2-related, by
Proposition 2.4(ii), it follows that the unit group U (K) of Q(K) has a nonabelian
free subgroup.
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Let P(K) = {ai + Bj + vk| o, 8,7 € K} be the 3-dimensional space of pure
quaternions. Then U(K) acts on P(K) by conjugation, and this gives rise to
a homomorphism #: U(K) — GL3(K). It is easy to check that the image is
contained in O3(K). Indeed, let u € U(K), let a,b € {i,j,k} and let tr: Q(K) —
K denote the usual trace map. Since a? = b%? = —1, the matrix entries satisfy

O(u)ap = — tr(u" aub) = — tr(ubu~'a) = O(u™p 4.

Thus 6(u)~! = 6(u~1) = 8(u)T, and 8: U(K) — O3(K). Since the kernel of 6 is
clearly equal to U(K)NK*, it follows from the remarks of the previous paragraph
that O3(K) contains a nonabelian free group.

Finally, if char K > 0, then Q(K) 2 Ma(K), so U(K) = GL2(K) and GLy(K)
contains a copy of F2. On the other hand, if char K = 0, then [S] supplies concrete
generators for a rank 2 free subgroup of SLa(Z). 1

With this in hand, we can now prove

LEMMA 2.6: Let K be a nonabsolute field of characteristic # 2 and let G =
A x (z), where A is abelian of order prime to the characteristic of K and (z) is

cyclic of prime order ¢ > 2. If (z) does not normalize all subgroups of A, then
U(K[G)) is not 2-related.

Proof: Since A is abelian, both (z) and * permute the finitely many primitive
idempotents of K[A]. Indeed, if e is such an idempotent, then (e%)* = (z~ter)* =
z*e*(z7l)* = z7le*s = (e*)%, so the actions commute. Furthermore, each
idempotent of K[A] is uniquely a sum of primitives. Now, by assumption, (z)
does not normalize some subgroup B of A. Hence (z) does not fix the principal
idempotent ep of K[B], and consequently (z) does not fix at least one of the
primitive idempotent summands of ep.

Now let e be any primitive idempotent of K[A] that is moved by z. Then
the element f =e+e*+---+ e*®" is a sum of q orthogonal idempotents, and
hence it is an idempotent in K[A] which is clearly central in K[G]. Note that
* permutes the {z)-orbits of primitive idempotents, so there are two cases to
consider according to whether * fixes {e,e”,..., ezq_l} or not.

Suppose first that * fixes the orbit. Then fK[G]is a x-stable direct summand of
K|[G], and it suffices to show that the group U(fK[G]) is not 2-related. Note that
* has order 2 and permutes the set {e,e”,..., e"‘q_l} containing an odd number
of elements. Thus * must fix at least one member of this set, say e. Next, observe
that (fz) is a group of units of order ¢ in fK[G] that transitively permutes the
set {e,e”,.. .,ezq_l}. Furthermore, the latter idempotents are the summands
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of an orthogonal decomposition of f, the identity of fK[G]. Thus, if we define
e = z ez’ for i,5 = 0,1,...,q — 1 then, by the proof of [P, Lemma 6.1.6],
{ei ;} is a set of matrix units for My(K), a K-subalgebra of fK[G]. Indeed, since
e}; = (x77ex')* = z7%exd = e;;, we see that My(K) is *-stable with * acting
as the transpose. Thus U(fK[G]) D U(My(K)) = O4(K) 2 O3(K). But O3(K)
contains a free group of rank 2, by the previous lemma, so this case follows.

On the other hand, suppose that * moves the orbit {e, e”, ..., et }. Then it is
clear that f* is orthogonal to f, and hence that S = fK[G]® f*K|[G] is a x-stable
direct summand of K[G]. Again, it suffices to show that 4(S) is not 2-related.
Now, as above, we know that fK|[G] contains a subalgebra isomorphic to M4 (K).
With this, we get an embedding of GL4(K) into £(S) given by u — u & (u*)~L.
Thus (S) contains an isomorphic copy of GL4(K) 2 GL2(K), and hence Lemma
2.5 implies that it contains a free group of rank 2. This completes the proof. |

The next argument is similar, and even quicker. Note that, if |G| is prime
to the characteristic of the algebraically closed field F, then the representation
theory of F[G] mirrors that of the complex group algebra C[G].

LEMMA 2.7: Let K be a nonabsolute field of characteristic # 2 and let F' denote
its algebraic closure. Suppose G is a 2-group with a normal elementary abelian
subgroup A of index 4. If F|G] has an irreducible representation of degree > 2,
then YU(K{G]) is not 2-related.

Proof: By assumption, G has an irreducible character x with degy > 4. If A
is an irreducible constituent of x4, the restriction of x to A, then A is linear
and Frobenius reciprocity [I1, Lemma 5.2] implies that x is a constituent of the
induced character A of degree 4. Thus x = A% has degree 4. Furthermore,
we know that G/A transitively permutes the irreducible constituents of x 4, and
it is now clear that G/A must act regularly. Indeed, if this were not the case,
then there would exist a subgroup B D A fixing A, with |B : A| = 2. But then
the image of A is central in the representation associated with AZ, so A2 would
split into two linear constituents, and then x = A® = (AB)Y would also split, a
contradiction.

Let e be the primitive idempotent of F[A] corresponding to A. Since A is an
elementary abelian 2-group, A: A — {£1} and hence e € K[A]. Furthermore, *
acts trivially on K[A], so e* = e. Now let 71, z3, Z3, T4 be coset representatives for
Ain G. Then f = e® + €% €% + €% is a sum of four orthogonal idempotents,
and hence f is a =-stable central idempotent of K[G]. In addition, if we set

€ij = T, ex;, then the proof of [P, Lemma 6.1.6] implies that {eijl i, =
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1,2,3,4} is a set of matrix units in fK[G]. Thus fK[G] O M4(K) and, since
ej; = (a:;lexi)* = z;'ex; = ej;, we see that Y(FK[G]) D O4(K) 2 O3(K).
Thus, by Lemma 2.5, U(f K[G]) contains the free group §2, and hence the same
is true for YU(K[G]). |

§3. Group-theoretic reductions

In this final section, we complete the proof of Theorem 1.3 by showing that if
U(KI[G]) is 2-related, then G has the appropriate structure. We proceed in a
series of steps, each step being proved by induction. Specifically, we know by
Lemma 1.2 that if $(K[G]) is 2-related, then so is U(K[H]) for every subgroup
and every homomorphic image H of G. Thus, we are able to assume at each step
that all proper subgroups and homomorphic images of G satisfy the conclusion
of the step. In particular, if G is a minimal counterexample, then we are able to
show that G is one of the handful of special cases considered in Proposition 2.4,
Lemma 2.6 and Lemma 2.7. We start with

LEMMA 3.1: Assume that (K [G)) is 2-related. If G is a g-group for some odd
prime q different from the characteristic of K, then G is abelian.

Proof: Let G be a minimal counterexample to the conclusion. Then G is a non-
abelian g-group having all proper subgroups and homomorphic images abelian.
The structure of such minimal nonabelian groups is well known, and a quick
derivation of this result is included in the argument below. First, G is not cyclic,
so it has two distinct maximal subgroups A and B, each normal of index ¢. By
assumption, A and B are abelian and, since AN B is centralized by G = AB,
we see that Z = Z(G) = AN B has index ¢% in G with G/Z abelian of period
g. Next, let J be a central subgroup of G of order ¢. Then G/J is abelian, so
G' C J, and hence G’ = J. Thus J is unique and Z is cyclic of order, say, ¢”.

Since ¢ # 2 and G’ is central of period ¢, the g-power map o: z +— 2% is a
homomorphism into Z. In particular, if H is the kernel of ¢, then H is normal
in G and consists of all elements of G of order 1 or ¢q. If ¢ is onto Z, then
G has a cyclic subgroup C of order ¢"*! and hence of index ¢q. Furthermore,
|H| = ¢ and |[HNC| = ¢, s0 G = C x (y) for some element y of order q. But
this group cannot occur, by Proposition 2.4(i), and thus o is not onto. It follows
that o(G) = o(Z) = Z9, so G = ZH and H is nonabelian. By the minimal
nature of G, we see that G = H is a nonabelian g group of order ¢* and period
g. But this group has the structure described in Lemma 2.6, so again we obtain
a contradiction. 1
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More to the point, we now prove

LeMMA 3.2: If W(K|G)) is 2-related, then G has subgroups P CT C G with
(i} P is a normal Sylow p-subgroup of G with p equal to the characteristic of
K. By convention, P =1 if char K = 0.
(ii) T is a normal 2-complement of G, so that T has odd order and G/T is a
2-group.
(iii) T/P is abelian.

Proof: Note that a normal Sylow subgroup and a normal Sylow complement
are necessarily characteristic subgroups. Assume by way of contradiction that
the result is false, and let G be a counterexample of minimal order. Then every
proper subgroup and homomorphic image of G satisfies the conclusion of this
lemma. We proceed in a series of steps.

STEP 1: G has no proper normal subgroup of order divisible by p = char K.
Furthermore, G has no proper homomorphic image of even order.

Proof: Suppose N is a proper normal subgroup of order divisible by p. Then N
has a nonidentity characteristic p-subgroup P, so P<G. Since G / P satisfies the
conclusion of this lemma, it is clear that G does also, a contradiction.

On the other hand, suppose that G has a proper homomorphic image G of
even order. Then G has a nonidentity 2-group as a homomorphic image, and
hence so does G. In other words, there exists M <« G with G/M a nonidentity
2-group. Since M satisfies the conclusion of this lemma, it is now clear that G
does also, again a contradiction. n

STEP 2: G has odd order.

Proof: If G has even order, then it follows from Step 1 that G does not have
a normal 2-complement. On the other hand, every proper subgroup of G does
have a normal 2-complement. Thus, by Frobenius’ theorem [H, Satz IV.5.8(b)],
G must have a nonidentity normal 2-subgroup, and we choose A to be such a
subgroup of minimal order. By Step 1, G/A has odd order, so A is a Sylow 2-
subgroup of G. Furthermore, G/A is solvable, so there exists a normal subgroup
H of G with A C H C G and G/H cyclic of odd prime order g.

By the minimal nature of G, H has a normal 2-complement T" and T < G.
But G/T has even order, since TN A = 1, so Step 1 implies that T = 1 and
H = A. In other words, G = A x (y) where A is a 2-group and (y) is cyclic
of odd prime order ¢. Furthermore, the minimal nature of A guarantees that A
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has no proper characteristic subgroup. Thus A is an elementary abelian 2-group
and (y) acts irreducibly on A. If |4| = 2, then (y) acts trivially, so {(y) < G
and G/{y) = A, contradicting Step 1. Thus |4| > 2 and A has nonidentity
subgroups not normalized by (y). Thus G satisfies the assumptions of Lemma
2.6, contradicting the fact that U(K[G]) is 2-related. [ |

STEP 3: Final contradiction.

Proof: A repetition of the above argument will yield the result. We now know
that G has odd order. Furthermore, any group of odd order satisfying the con-
clusion of this lemma has a normal g-complement for every prime ¢ different
from p = char K. Conversely, suppose that G has a normal g-complement C,
for each prime divisor ¢ of |G| different from p. Then ) ; Cq is a normal Sylow
p-subgroup of G and hence, by Step 1, ﬂq Cy = 1. Tt then follows that G is
nilpotent of odd order prime to p, and consequently Lemma 3.1 implies that G
is abelian, a contradiction.

Thus, for some prime ¢ dividing |G| and different from char K, G does not
have a normal ¢t-complement. Indeed, G has no proper homomorphic image of
order divisible by t. To see this, suppose G is such a homomorphic image with
t dividing |G|. Then G has a normal ¢t-complement, so it has a nonidentity t-
group as a homomorphic image. It follows that there exists M « G with G/M a
nonidentity ¢{-group. But M has a normal ¢{-complement N, and N is surely a
normal t-complement in G, contradiction.

Since every proper subgroup of G has a normal ¢-complement, Frobenius’ theo-
rem [H, Satz IV.5.8(b)] implies that G has a nonidentity normal ¢-subgroup, and
we choose A to be such a subgroup of minimal order. By the above observation,
G/ A has order prime to t, so A is a Sylow ¢-subgroup of G. Furthermore, G/A is
solvable, so there exists a normal subgroup H of G with AC H C G and G/H
cyclic of odd prime order g # t.

By the minimal nature of G, H has a normal t-complement T and T <G. But
G/T has order divisible by ¢, since T N A = 1, so the above observation implies
that T = 1 and H = A. In other words, G = A x (y) where A is a t-group
and (y) is cyclic of odd prime order ¢ # ¢. Furthermore, the minimal nature
of A guarantees that A has no proper characteristic subgroup. Thus A is an
elementary abelian t-group and (y) acts irreducibly on A. If (y) acts trivially,
then (y) <G and G/(y) = A, contradicting our comments about the possible
homomorphic images of G. Thus (y) must act faithfully on A.

Finally, if A is not cyclic, then A has nonidentity subgroups not normalized
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by {y). Thus G satisfies the assumptions of Lemma 2.6, contradicting the fact
that Y(K[G]) is 2-related. On the other hand, if A is cyclic, then G is the type
of group considered in Proposition 2.4(i), and again we obtain the necessary
contradiction. ]

For the next step, it is convenient to first isolate the following fact.

LEMMA 3.3: Let G be a 2-group with center Z of index 8, and assume that every
nonabelian homomorphic image of G has a center which is an elementary abelian
2-group. Then G has an abelian subgroup of index 2.

Proof: Assume, by way of contradiction, that G has no abelian subgroup of
index 2. Then certainly G/Z has no elements of order 4. It follows that G/Z is
an elementary abelian 2-group, and hence that G has class 2. By assumption,
Z is an elementary abelian 2-group. Suppose g € G~ Z. If |G : Cg(g)] = 2,
then C(g) is clearly an abelian subgroup of G of index 2, a contradiction. Thus
|G : C(g)| = 4 and hence the commutator group [g, G] has order 4. In particular,
we have |G'| > 4.

Let z,y, z generate G/Z and let u, v and w be the three commutators u = [z, y},
v = [y, 2], w = [2,z]. Then u,v,w generate G', so |G'| < 8. If |G'| = 4, we note
that the result of the previous paragraph yields [g,G] = G’ for all g € G~ Z.
In this case, if T is any subgroup of G’ of order 2, then G/T is a group with
commutator G’ /T of order 2 and with center Z/T of index 8. As is well known,
this cannot occur. For example, let § and h be elements of G = G/T which do not
commute. Then Cg(7) and Cg(h) are distinct abelian subgroups of G of index
2, and hence Cg (g) NCg(h) is a central subgroup of G of index 4, contradiction.
Thus u, v, w generate an elementary abelian 2-group of order 8.

Again, let g € G~ Z. Since [g,G] has order 4, this group is properly smaller
than G'. Hence G/[g,G] is nonabelian, so its center is an elementary abelian
2-group by hypothesis. But the image of g is contained in this center, so we
2

conclude that g2 € [g,G] for all such g. In particular, we must have 2% = u®w?,

y? = u"v® and 22 = v°w” for suitable exponents o, B,7v,6,0,7 € {0,1}. Now,
let g = z%y%2¢ € G~ Z. Then [g,z] = u~ w®, [g,y] = u®v~° and [g, z] = w™®
generate [g, G|, so we see that [g,G] = {u"v*w!| rc + sa + tb = 0 mod 2}. Next,
observe that
gz — :anbzcmaybzc — xayb,xazc.ybzc.[zc’xa]
— :Czayb ybz2c [yb’ :I:a’][zc, yb][zc’ xa]
_ .’132ay2b220 —abv—bcwac

— u(aa+b’y—ab)v(b6+ca—bc)w(aﬁ+cr+ac) .
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In particular, since g2 € [g, G], we have

0 = c(ax + by — ab) + a(bd + co — be) + b(aB + cr + ac)
=ab(é + B) + ac(a + o) + be(y + 7) — abcmod 2

and this holds for all choices of a, b, c not all 0. Now, witha =b=1 and ¢ =0,
we deduce that 3+ 6 = 0. Similarly, a = ¢ =1, b = 0 yields a + ¢ = 0, and
b=c=1, a =0 implies that v + 7 = 0. Thus the above displayed equation
simplifies to 0 = —-abcmod 2, a contradiction when @ = b = ¢ = 1. It follows that
G has an abelian subgroup of index 2, as required. |

Now if U(K[G]) is 2-related then Lemma 3.2 implies that G has a normal Sylow
p-subgroup P for p = char K. Furthermore, by Lemma 1.2, Y(K[G/P]) is also
2-related. Thus, for most of the remainder of this paper, it suffices study G/P,
or equivalently we can assume that |G| is prime to the characteristic of K. The
next major step in the proof of Theorem 1.3 is

LEMMA 3.4: If UW(K[G]) is 2-related and if |G| is prime to the characteristic of
K, then either G is abelian or it has an abelian subgroup of index 2.

Proof: Assume by way of contradiction that the result is false, and let G be a
counterexample of minimal order. Then every proper subgroup and homomorphic
image of G satisfies the conclusion of this lemma. Let F' denote the algebraic
closure of K. We proceed in a series of steps.

STEP 1: G has the following properties.
(i) If H is a proper subgroup or homomorphic image of G, then either H is
abelian or Z(H) is an elementary abelian 2-group.
(ii) F[G] has an irreducible representation of degree > 2, and Z(G) is cyclic.
(iii) G has no normal cyclic subgroup of order 4.

Proof: (i) If H is a proper subgroup or homomorphic image of G, then H
is either abelian or has an abelian subgroup of index 2. Thus, all irreducible
representations of F[H| have degree < 2, and Proposition 2.4(v) yields the result.

(ii) If all irreducible representations of F[G] have degree < 2, then a theorem of
Amitsur (see [I1, Theorem 12.11] or [P, pages 263-264]) implies that either G has
an abelian subgroup of index < 2 or |G : Z(G)| = 8. By assumption, the former
case does not occur. If the latter case occurs, then Z(G) is an elementary abelian
2-group by Proposition 2.4(v). Thus, by (i) above, G satisfies the hypotheses of
Lemma 3.3, and G has an abelian subgroup of index 2, contradiction.
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It follows that F[G] has an irreducible representation of degree > 2, and any
such representation must be faithful on G. Otherwise, it corresponds to a rep-
resentation of F[H] for some proper homomorphic image H of G, and we know
that F[H]| has all representations of degree < 2. In particular, Z(G) is cyclic.

(iii) Suppose that L is a normal cyclic subgroup of G of order 4. Then
jAut(L)| = 2, so |G : Ce(L)] € 2. If Cg{L) has index 2, then C{L) is abelian
by (i) above, a contradiction. Thus, L must be central. Now if 8 divides |G|,
then Lemma 3.2 implies that G has a normal subgroup H of index 2 containing
L, and again H is abelian. On the other hand, if 8 does not divide |G|, then
Lemma 3.2 implies that G = L x A is abelian, where A is the normal abelian
2-complement of G. L]

STEP 2: G is a 2-group.

Proof: Let A be the normal abelian 2-complement of G given by Lemma 3.2,
and assume that A # 1. Note that |G/A] > 4 since G does not have an abelian
subgroup of index < 2. Let C = Cg(A)aG. We know that G has a normal
subgroup H of index 2, and that H has an abelian subgroup Hj of index < 2.
Since A C Hy, it follows that Hy C Cg(A) = C, and hence that |G : C| =1, 2,
or 4. If |G : C| = 2, then C is abelian by Step 1(i), and if |G : C| =1, then H is
abelian by the same result. Thus we must have |G : C| = 4.

Let L be any subgroup of G with L D C and |[L: C| =2. Then ANZ(L)=1
by Step 1(i), so L/C acts fixed point freely on the abelian group A of odd order,
and hence L/C acts in a dihedral manner. Thus, L must be the unique such
group, and consequently G/C is cyclic of order 4. Finally, let y be a 2-element
of G generating the quotient G/C, and consider the subgroup of G given by
(A,y) = A% (y). Then y* is central in this group, so G = (A,y)/(y*) = A x (§)
is involved in G. But #(K[G]) is not 2-related, by Proposition 2.4(iv), and hence
we have the required contradiction. 1

STEP 3: Final contradiction.

Proof: We now know that G is a 2-group and, by Step 1(ii)(iii), J = Z(G)
has order 2. It follows from the minimal nature of G that G/J has an abelian
subgroup H/J of index 2, and since H is nonabelian, we have H' = J. Further-
more, H has an abelian subgroup B of index 2, and hence H = (B, t) for some
t € H. Note that the commutator map b — [b,t] is a homomorphism from B
onto H' with kernel Z = Z(H). Thus, since |H'| = 2, we see that |B : 7| = 2 and
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|H : Z| = 4. By Step 1(i), Z is an elementary abelian 2-group, and the group
G/H = {1, g} of order 2 acts on Z with Cz(g) = Z(G). Since each Jordan block
for the matrix representation of § yields a fixed point and since |Z(G)| = 2, there
can be only one such block and |Z| < 4. If |Z| = 2, then |H| = 8 and H must
be the dihedral group by Proposition 2.4(ii). But then H has a characteristic
cyclic subgroup of order 4 and this yields a normal cyclic subgroup of G of order
4, contradicting Step 1(iii). It follows that |Z| = 4, |H| = 16 and |G| = 32.

Now Z C H C G is a normal series for G, so there exists A <G with Z C
A C H and |A: Z| = 2. Clearly A is abelian and, since Z is abelian of type
(2,2), we see that A is abelian of type (2,2,2) or (4,2). In the first case, since
|IG/A| = 4, we obtain a contradiction from Step 1(ii) and Lemma 2.7. Thus,
we can assume that A is type (4,2), and we can now completely describe the
group G. To start with, let A = (z,w) = (z) x (w) with || = 4 and |w| = 2.
Since A% = (x2) « G, it follows that A2 = Z(G) = H’. Furthermore, we know
that Z = Z(H) = (2%, w) since Z is elementary abelian. In particular, if we set
H = (A,h), then z? = .22 = 7! and w" = w. Also, h? € Z = (22, w), so
there are four possibilities. If h2 = z2, then (x, h) is isomorphic to the quaternion
group of order 8, contradicting Proposition 2.4(ii). On the other hand, if h% = w
or z?w, and if Z = (z2w) or (w), respectively, then H/Z is isomorphic to the
quaternion group of order 8, again a contradiction. Thus h2 = 1 and H = A x (h)
is a dihedral group and, in particular, every element of H ~ A has order 2.

Finally, let G = (H,y). Since (z) < H and (z) 4 G, by Step 1(iii), we must
have z¥ = zw or z(z?w). But A = (z) x {(w) = (z) x (z’w), so without loss of
generality, we can assume that z¥ = zw. Furthermore, w is not central in G, but
it is central in G/J since |Z/J| = 2, so w¥ = z?w. Next, observe that y?> € H
and that z¥° = z¥%uwY = zwzlw = 271, so y2 € H ™ A. Hence y? has order 2 and
y has order 4. It follows that G = A x (y) with A = (z) x (w), |z| = |y| = 4,
|lw| =2, z¥ = ™1, and w¥ = z?w. In other words, G is the group of Proposition
2.4(iv) and we conclude that U(K[G]) is not 2-related. |

We can now complete the proof of the main result. Specifically, we offer the

Proof of the hard direction of Theorem 1.3: Here we assume that U{K[G]) is
2-related. The goal is to show that G has the structure given in parts (i) and
(ii) of the statement of the theorem. To start with, by Lemma 3.2(i), G has a
normal Sylow p-subgroup with p = char K. Thus, since (K [G/P)) is 2-related,
it suffices to study G/P. Equivalently, we can now assume that P = 1 so that |G|
is prime to the characteristic of K. If G is abelian, the result is proved. Therefore,
by Lemma 3.4, we can assume that G has a noncentral abelian subgroup A of
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index 2. We must show that either A has period 2, that is A% = {a?|a € A} =1,
or that G = A x (z) is dihedral. Note that, if G = (A, g, then g% € Z(G) and, for
any a € A, we have (ag)? = ag?¢9 'ag = aa9¢®. In other words, G is dihedral if
and only if (G~ A)? = {b?| b € G~ A} = 1. Note also that if F is the algebraic
closure of K, then all irreducible representations of F[G] have degree < 2. Thus,
by Proposition 2.4(v), Z(G) is an elementary abelian 2-group. For convenience,
we split the argument into three cases.

CAsE 1: If G has at least two distinct abelian subgroups of index 2, then G has
precisely three abelian subgroups of index 2, |G : Z(G)| = 4, and G' has order 2.
Furthermore, G has an elementary abelian subgroup of index 2.

Proof: If A and B are distinct abelian subgroups of G of index 2, then Z = ANB
is central in G = AB. Hence Z = Z(G) has index 4 in G, and in fact G/Z is
abelian of type (2,2). Furthermore, all abelian subgroups of G of index 2 contain
Z, so there are precisely three such, say A, Ay, A;. Note that G = (Z, z,y) for
some z,y, and that {z,y] € Z has order 2. Thus, since G is abelian modulo
{[z,y]), it follows that G’ = {[x,y]) has order 2.

We prove by induction that at least one of A;, A2, A3 has period 2. Suppose
first that |Z| > 8, and choose four distinct central subgroups Ji, Js, J3, J4 differ-
ent from G'. Then G/J; is nonabelian and has three abelian subgroups of index
2, namely A,/J;, A2/J; and As/J;. Thus, by induction on |G|, there exists a
subscript f(i) € {1,2,3} such that (Agq)/J;)? = 1 or equivalently (A;))* C J;.
Since there are four J;s and only three Ags, there must exist i # ¢’ and k with
A2 C J;N Jy =1, as required.

Thus we can assume that |Z| < 4. If |Z| = 2, then G is nonabelian of order 8
and, since G is not quaternion by Proposition 2.4(ii), we see that G is dihedral and
hence has an elementary abelian subgroup of index 2. Finally, suppose |Z| = 4
and let C' and D be the subgroups of Z of order 2 different from G’. Then G/C
is dihedral of order 8 and hence has two elementary abelian subgroups of index
2. Thus there exist distinct k, k' with A2, A%, C C. Similarly, there exist distinct
£,¢ with A2, AZ C D. But there are only three subscripts, so {k, k'} N {£,£'} # 0
and if say k = £, then A CCND=1. ]

CASE 2: The result holds if G is a 2-group.

Proof: For convenience, let o denote the automorphism of A determined by the
action of the nonidentity element of G/A. As we have observed above, Z = Z(G)
is elementary abelian, and the quaternion group of order 8 is not involved in
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G. Since A is abelian, it is clear that (G~ A)?2 C Z. As usual, we proceed by
induction on the order of G.

Let B = {a € A| a° = a!}. Then B is a subgroup of A containing Z, and
indeed Z is precisely the set of elements of B of order < 2. In particular, if B
is properly larger than Z, then there exists an element b € B with |b] = 4. We
show in this case that (G~ A)2 = 1. Suppose, by way of contradiction, that
there exists z € G~ A with 2 # 1. Then we have 1 # 22 € Z and b® = b = b~}
with 1 # b2 € Z. Furthermore, there is a homomorphic image Z of Z in which
22 and b? are identified. Thus, there exists a homomorphic image (b, Z) of (b, z)
such that 5% = b~! and b2 = 7% # 1. But this shows that the quaternion group of
order 8 is involved in G, a contradiction. Thus (G~ A)? =1 and G is dihedral.

We can now assume that B = Z. Next observe that G’ = {a°a~!| a € A}
so clearly G’ C B = Z. Furthermore, the map A — G’ given by a — a%a™! is
a homomorphism onto G’ with kernel Z. Thus A/Z 2 G' C Z and, since Z is
elementary abelian, we conclude that A2 C Z and |4| = |Z| |G| < |Z|2.

Suppose that |A| = |Z|?, and consider the endomorphism of A given by a —
a’a with image I. Clearly I C Z and, since the kernel of this map is B = Z, we
have |Z|2 = |A| = |B||I| = |Z||I],s0 I = Z. Nowifw € G~ Aandifa € A, then
(aw)? = aa®w? and it follows that (G ~ A)? = Jw? = Zw? = Z. In this situation,
we claim that A2 = 1. Indeed, if this is not the case, let a € A with |a| = 4. Since
(G~ A)? = Z and a? € Z, we can choose y € G ™ A with y2 = a®. Furthermore,
a ¢ Z, so the commutator v = [y,a] is a nonidentity element of G' C Z. As
above, Z has a homomorphic image identifying y? with u, and hence (a,y) has
a homomorphic image (@, §) satisfying a* = 1 and a? = % = [¢,a] # 1. In other
words, (d, ) is isomorphic to the quaternion group of order 8, a contradiction.
Thus A2 = 1, and we are done in this case.

It now suffices to assume that |A| > |Z|? and, since |A| = |G'||Z|, we see that
Z properly contains G'. Furthermore, if |G’| = 2, then |A: Z| = 2 and G/Z is
abelian of type (2,2). Thus G has at least three abelian subgroups of index 2,
and Case 1 yields the result. Finally, if |G’| > 4, then since Z is properly larger,
there exist three different subgroups Ji, Jo, J3 of Z of order 2 that are disjoint
from G’. Note that (G/J;)' = G'J;/J; = G’ has order > 4 so, by Case 1, G/J;
has a unique abelian subgroup of index 2, namely A/J;. By induction, either
A/J; has period 2 so A2 C J; or G/J; is dihedral in which case (G~ A)? C J;.
Since there are three different subscripts and only two possible outcomes, we see
that there exist i # j with either A2 C J;nJ; =lor (GNAP2 C JinJ; =1,
Thus, either A has period 2 or G is dihedral. |
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CASE 3: The result holds in general.

Proof: In view of Case 2, we can now assume that G is not a 2-group. In
particular, G has a nonidentity normal abelian 2-complement B C A, and
BNZ(G) =1 since Z(G) is an elementary abelian 2-group. It follows that G/A
acts fixed point freely on B, and hence G/A must act in a dihedral manner. The
goal here is to show that G is a dihedral group or equivalently that (G ~ 4)% = 1.
If this does not occur, then we can choose z € G A with 22 # 1. As we observed
before, £2 € (G~ A)? C Z(G), so (%)% = 1 and |z| = 4. Finally, let 1 # b € B
be any element and let |b| = 7. Then r is odd and b* = b~1, so (b, ) has a cyclic
subgroup (bz?) of order 2r and index 2. Furthermore, (bz%)® = b~12? = (bz?)~!
and (bx?)" = 22 # 1. In other words, (b, ) is a quaternion group of order 4r,
contradicting Proposition 2.4(ii), and this completes the proof. |

References

[H] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[I1] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
[I2] 1. M. Isaacs, Algebra: A Graduate Course, Brooks/Cole, Pacific Grove, 1994.

[P] D.S. Passman, The Algebraic Structure of Group Rings, Wiley-Interscience, New
York, 1977.

[S] I. N. Sanov, A property of a representation of a free group, Doklady Akademii
Nauk SSSR 57 {1947), 657-659 {Russian).

[T] J. Tits, Free subgroups in linear groups, Journal of Algebra 20 (1972), 250-270.



