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ABSTRACT 

Let K[G] denote  the  group algebra  of the  finite group G over the  non- 

absolu te  field K of character is t ic  ¢ 2, and  let *: K[G] --+ K[G] be the  

K- involu t ion  de te rmined  by g* ---- g - 1  for all g C G. In this  paper ,  we 

s t u d y  the  group ~ = f l(K[G]) of un i t a ry  uni t s  of K[G] and  we classify 

those  groups G for which i l  conta ins  no nonabel ian  free group.  If K is 

algebraically closed, t h e n  this  problem can  be effectively s tudied  via  the  

representa t ion  theory  of K[G]. However, for general  fields, it is preferable 

to take an  approach  which avoids hav ing  to consider the  division rings 

involved. Thus ,  we use a resul t  of T i t s  to cons t ruc t  fairly concrete  free 

genera tors  in n u m e r o u s  crucial special cases. 

* T h e  f i rs t  a u t h o r ' s  r e s e a r c h  w a s  s u p p o r t e d  in  p a r t  b y  C a p e s  a n d  F a p e s p  - Brazi l .  
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R e c e i v e d  A p r i l  10, 2000 
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§1. P r e l i m i n a r i e s  

For convenience, we say that  an arbi trary group ~ is 2-related if it contains no 

nonabelian free subgroup. Thus ~ is 2-related if and only if every homomorphism 

from the 2-generator free group ~2 into ~b has a nontrivial kernel and hence if and 

only if every two elements of ~b are related, that  is satisfy a nontrivial word in 

~2. Obviously, the property of being 2-related is closed under taking subgroups 

and homomorphic images. 

Now let R be a ring with involution *. A unit u C R is said to be unitary if 

uu* = u*u = 1 and we denote by 11(R) the multiplicative group of all unitary 

units of R. If R is a K-algebra,  we assume t h a t ,  is a K-involution, that  is it 

acts trivially on K.  

LEMMA 1.1: Let R be a ring with involution , .  

(i) I f  S is a , -s table subring or direct summand of  R,  then i t(S)  embeds iso- 

morphically into i t(R).  In particular, i f  i t(R) is 2-related, then so is t1(8). 

(ii) Assume that R is a K-algebra with char K ¢ 2 and let S = R / I  where I 

is a , -s table nil ideal of  R. Then every unitary unit of  S lifts to one of  R. 

In particular, i t (S)  is a homomorphic image of11(R). 

(iii) Let S = R / I  be as in (ii). If11(R) is 2-related, then so is 11(S). Furthermore, 

the converse holds if  char K > 2. 

Proof: Part  (i) is clear. For (ii), let ~ be a unitary unit of S = R / I  and, since I is 

a nil ideal of R, let u be a unit of R which maps to ft. Then u* maps to fi*, so uu* 

maps to fit* = 1. In other words, uu* = 1 + x where x is a *-symmetric element 

of I ,  since uu* is *-symmetric. By assumption, x is nitpotent. If  char K = p > 0, 

then 1 + x is a unit of order p~ for some n and hence it has finite odd order. It  

follows that  1 + x has a square root 1 + y -- (1 + x) t for some integer t. On the 

other hand, if char K = 0, then 1 + x again has a square root 1 + y obtained by 

evaluating the Taylor series for ~/1 + ~ at the nilpotent element x. In both  cases, 

y is a polynomial in x with zero constant term, so y is nilpotent and . -symmetric .  

Thus uu* =- l + x  = ( l + y )  s = (1 +y) (1  +y)* ,  and v -- (1 ÷ y ) - l u  is the required 

unitary unit of R which maps to ft. 

Finally, since 11(R) maps onto 11(S), we know that  if 11(R) is 2-related, then so 

is it(S). Furthermore, the kernel of this map is contained in 1 + I and hence it is 

periodic if char K > 2. In particular, any free subgroup of it(R) is disjoint from 

the kernel and hence embeds isomorphically into it(S). With this, we see that  if 

char K > 2 and if 11(S) is 2-related, then so is 11(R). This proves (iii). | 

Par t  (ii) above is false in characteristic 2. As an example, let char K = 2, let R 
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be the commutat ive K-algebra  R = K + K x  + K y  where x 2 = y2 = xy = yx = 0, 

and define • to interchange x and y. Then I = K ( x  + y) is a *-stable nil ideal 

of R and it is easy to see that  ~I(R) = 1 + I ,  so the image of g (R)  in g ( R / I )  is 

1. On the other hand, S = R / I  = K + K s  where s is a . -symmetr ic  element of 

square 0. Thus H(S) -- 1 + K s  is strictly larger than the image of ~I(R). 

The following is a standard Frattini argument. 

LEMMA 1.2: Let G be a finite group and let c h a r K  # 2. IfJ2(K[G]) is 2-related, 

then so is ~ (K[H])  for every subgroup and homomorphic image H of G. 

Proof." If  H is a subgroup of G, then K[H] is a ,-stable subalgebra of K[G], so 

Lemma 1.1(i) yields the result. 

Now let H ~- GIN.  We proceed by induction on IN[, the result being trivial 

if [N[ -- 1. Suppose first that  there exists a maximal subgroup M of G with 

N ~ M. Then M N  = G, so H ~ G I N  = M N / N  ~- M / ( M  N N).  Now we know 

that  L[(K[M]) is 2-related and, since IM N N] < ]g[, we conclude by induction 

that  ~I(K[H]) is 2-related. 

Thus, we can assume that  N is contained in all maximal subgroups of G, so N 

is contained in the Frattini subgroup of G. Hence N is nilpotent and, if P # 1 is a 

Sylow p-subgroup of N,  then P is characteristic in N and consequently normal in 

G. Furthermore, note that  G I N  ~ ( G / P ) / ( N / P )  and that  IN/PI < IN]. Thus, 

by induction, it suffices to show that  J2(K[G/P]) is 2-related, and there are two 

cases here. If p ¢ char K,  then K[G/P] is isomorphic to a *-stable algebra direct 

summand of K[G], so Lemma 1.1(i) again yields the result. On the other hand, 

if p -- char K,  then the kernel of the natural  map K[G] --+ K[G/P] is a *-stable 

nil ideal, and Lemma 1.1(iii) applies. | 

Now if K is an absolute field, that  is algebraic over a finite field, then the unit 

group of K[G] is locally finite and, in particular, ~I(K[G]) is 2-related. Thus, it 

is reasonable to assume for the remainder of this paper  that  K is nonabsolute. 

In other words, either char K -- 0 or char K > 0 and K contains an element 

transcendental over its prime subfield. We can now state our main result. 

THEOREM 1.3: Let G be a finite group and let K be a nonabsolute field of 

characteristic ~ 2. The unitary unit group ~2(K[G]) is 2-related i f  and only if  

(i) G has a normal Sylow p-subgroup P with p = char K,  and we set G = G / P .  

By  convention, P = 1 if  char K -- 0. 

(ii) Either G is abelian or it has an abelian subgroup fi of index 2. Furthermore, 

i f  the latter occurs, then either G = f i x  (fl) is dihedral, or fi is an elementary 

abelian 2-group. 
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Proof  of  the easy direction: We show here that  if G satisfies (i) and (ii) above, 

then £1(K[G]) is 2-related. Indeed, if F is the algebraic closure of K,  then since 

£[(K[G]) C_ iI(F[G]), it clearly suffices to show that  £1(F[G]) is 2-related. Further- 

more, if P is the normal Sylow p-subgroup of G with p = char K ,  then the kernel 

of the natural  epimorphism FIG] --+ F[G/P]  is a nil *-stable ideal. Thus, by 

Lemma 1.1(iii), it suffices to prove the result for G = G / P .  In other words, we 

can assume that  G = G has order prime to the characteristic of K.  Since the 

result is clear if G is abelian, we can now assume that  G has a normal abelian 

subgroup A of index 2 with appropriate properties. 

Let X be a nonlinear irreducible character of G. Since IG : A I = 2, it follows 

that  deg X = 2 and that  X vanishes off A. On the other hand, if a E A, then under 

either assumption, we see that  a is conjugate to a -1. Thus x(a)  = x (a  -1) and 

hence x(g)  = x (g  -1) for all g E G. Next, let :~ be the irreducible representation 

associated with X. Since X(F[G]) = M2(F), it is clear that  X(A) cannot be 

central and also that  :~(G \ A) cannot be central. Now, by assumption, either A 

consists of elements of square 1, or G \ A consists of elements of square 1. Thus 

in either case, there exists an element g E G with g2 = 1 and X(g) not central. I t  

follows that  X(g) has the two eigenvalues 1 and - 1 ,  so det X(g) = - 1  and hence 

det X ¢ 1. 

Finally, let X1, X2, . - . ,  X~ be all the nonlinear irreducible characters of G with 

corresponding centrally primitive idempotents el, e2 , . . . ,  e~ in FIG]. From the 

formula for ei and the fact that  x~(g) = x i (g  -1) for all g E G, it follows that  

e* = ei for all i. In particular, if we set e0 = 1 - el - e 2  . . . . .  er, then 
F[G] r F = ~-- = @ ~-~i=0 ei [G] is a *-decomposition of FIG], and hence II  il(F[G]) 

I-Ii=0 ~ where ~d~ is the set of units u of the algebra e~F[G] with u*u = ei. 

Now eoF[G] is commutative,  so certainly £[o is commutative. Furthermore, for 

i > 1 we know that  eiF[G] ~ M2(F) and that  * determines an involution on this 

matrix ring over the algebraically closed field F.  If  * is simplectic, then it is the 

unique symplectic involution on M2(F),  namely the adjoint map. Hence, for all 

g E G, we have eig -1 =- (eig)* = adj(eig) = ( e i g - 1 ) d e t x i ( g ) ,  so de tx i  = 1, a 

contradiction. Thus * must be orthogonal, so K / -  O2(F),  a suitable orthogonal 

group, and hence ~ is solvable. Consequently, £{ is solvable and contains no 

nonabelian free group. | 

The more difficult direction of this proof requires the work of the next two 

sections. To start  with, in section 2, we use a result of Tits to construct fairly 

concrete (essentially) free generators in II(K[G]) in certain crucial special cases. 

We then use these special cases in section 3, along with a purely group theoretic 
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argument,  to complete the proof of Theorem 1.3. 

§2. C o n c r e t e  e x a m p l e s  

If R is a ring with involution • and if a E R commutes with a*, then certainly 

c~(a*) -1 E ~I(R) provided, of course, that  a ,  and hence a*, is invertible. If  

R is a K-algebra,  then it is convenient to introduce a second parameter  here. 

Specifically if a commutes with ~* and if k E K,  then we write 

uk(a) = (k - ~)(k - ~ . ) -1  e U(R), 

again provided that  k - c~, and hence k - c~*, is invertible. 

In this section, we construct concrete unitary units in K[G] using the above 

formula, and then apply the result of Tits IT, Proposition 3.12] to show that  

these elements (essentially) generate a free group. To start  with, let F be a field 

with a nonarchimedean valuation ~. Then we say that  F is locally compact,  with 

respect to the topology induced by ~, if every element of F has a neighborhood 

with compact closure. For example, if v is a complete, discrete valuation and 

if the residue class field/~ of F is finite, then it is easy to see that  F is locally 

compact.  For convenience, and to set notation, we state the above mentioned 

result in the form we require. 

PROPOSITION 2.1. IT]: Let a and b be semisimple elements in GLm(F) ,  where 

F is a locally compact field with nonarchimedean valuation v. Let GL,~(F) act 

on the m-dimensional vector space V and write V = A+ @ Ao @A_. Here A+, A0, 

and A_ are a-stable subspaces of  V with dim A+ = dim A_ = 1. Furthermore, 

assume that the eigenvalues of  a on these three spaces are contained in F and 

have valuations which are positive, zero, and negative, respectively. Similarly, 

write V = B+ ® Bo @ B_  with corresponding properties for the element b. I f  

Ai ~: B j  @ Bo and Bi ~ A j  • Ao for all i , j  E {+, - } ,  then the nonabelian free 

group ~2 is involved in (a,b). 

The conclusion of [T, Proposition 3.12] is actually somewhat stronger than 

stated here. Namely, it asserts that  there exists an integer so such that  for all 

s > So, the image of (a 8, b s) in PGLm(F)  is free of rank 2. The eight subspace 

noninclusions listed above are usually trivially satisfied when m = 2. In general, if 

we let a +  denote the projection of V = A+ O Ao @A_ onto A+ and if a _ ,  fl+, and 

/3_ are defined similarly, then these assumptions are equivalent to aifij ~ 0 and 

fiiaj ~ 0 for all i , j  C { + , - } .  For obvious reasons, we call these the idempotent 

conditions. 
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We can now easily construct  the locally compac t  fields we require. 

LEMMA 2.2: Let  K[G] be given with [G[ = n, and suppose tha t  either K = Q is 

the field o f  rationals, or K = Ko( t )  is the rational function field in one variable 

over some finite pr ime  subfield Ko. Then there exists a field extension F o f  K ,  

containing all n th  roots  of  unity, such tha t  F is locally compact  with respect to 

the topology induced by a nonarchimedean valuation ~. Furthermore, 

(i) I l K  -- Q and ire E F is any n t h  root o f l ,  then there exist infinitely m a n y  

integers k E Z C_ K such tha t  v(k - e) > 0 and v (k  - 5) = 0 for ali other 

5 E F with 5 n = 1. 

(ii) I f  K = Ko( t )  and i f  0 ¢ e E F ' ,  where F '  is the finite subfield o f  F 

generated by all n t h  roots o f  1, then there exist infinitely m a n y  elements  

k E K ,  which are powers o f t ,  such that  v (k  - e) > 0 and v (k  - 8) = 0 for 

all other 5 E F t. 

Proof: (i) By an e lementary  special case of Dirichlet 's  t heorem [I2, Theo rem 

20.14], we can choose a pr ime p wi th  p _= 1 m o d n ,  and let F -- Qv denote  the 

p-adic field. Then  F is endowed with  a complete,  discrete valuat ion ~, and it 

has finite residue f ie ld /~  = GF(p) .  Thus,  we know tha t  F is locally compact .  

Let  ~: F --+/~ U {oc} denote the place m a p  corresponding to u. Then  qo yields 

a h o m o m o r p h i s m  from the p-adic integers Zp t o /~ .  Since the polynomia l  x p - x 

splits comple te ly  and has dist inct  roots  in /} ,  Hensel 's  l emma  implies t ha t  it splits 

comple te ly  in Zp and tha t  ~o maps  the roots  in Zp to those in /~ .  In  par t icular ,  

since ni(p - 1), we see t ha t  Zp contains all n t h  roots  of  uni ty  and tha t  they are 

m a p p e d  by ~ in a one-to-one manner  to the n th  roots  of uni ty in GF(p) .  

Finally, let e be any n t h  root  of uni ty in Zp. Then  ~(e) E GF(p) ,  so there 

exist infinitely m a n y  integers k E Z C_ K with ~(k)  = ~(e). Thus  ~(k  - e) = 0 

and v (k  - e) > 0. On the other  hand,  if 5 is an n t h  root  different f rom e, then 

~(5) ¢ ~o(e) so ~(k  - 5) = ~(e) - ~(5) ¢ 0 and consequently v(k - 5) = 0. 

(ii) Here K = Ko(t )  and we let F '  denote the spl i t t ing field over Ko of the 

polynomia l  x '~ - 1, so tha t  F ~ is a finite field generated by all n t h  roots  of unity. 

Choose 7 E F ~ to generate  the cyclic mult ipl icat ive group of this field, and let 

F = F ' ( ( t  - ~/)) D_ K be the field consisting of all Laurent  series over F '  in 

the variable t - 7. Certainly,  F has a complete,  discrete valuat ion v wi th  finite 

residue field F ~. In  part icular ,  F is locally compact .  Let ~: F ~ F~U{c~} denote 

the place m a p  corresponding to v. Then  ~( t  - "y) = 0 so ~(t)  = % Since "y is a 

cyclic genera tor  for the mult ipl icat ive group of F ' ,  it follows tha t  each nonzero 

element of F ~ is an image of infinitely m a n y  dist inct  powers of t. 
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Finally, if 0 ~ e C F ~, then we know tha t  there exist infinitely many  distinct 

powers k = t j C g with ~(k) = qo(tJ) = 3'J = e = ~(e). Thus ~ ( k -  e) = 0 and 

~(k - e) > 0. On the other  hand, if 5 E F' is different f rom e, then ~(5) = ~ 

e = ~(e) so ~(k - 5) = ~(e) - ~(5) ¢ 0 and consequently t,(k - ~) = 0. | 

Recall tha t  if A is a subgroup of G, then there is a natural  F[A]-bimodule  

projection ~rA: F[G] -~ F[A] C_ F[G] given by rA(g) = g if g • A and ~rA(g) = 

0 for g • G \ A. Pa r t  (i) of the following lemma allows us to easily verify 

the idempotent  condit ion in most  cases. See [Ill for basic properties of group 

representations. 

LEMMA 2.3: Let FIG] be given. 

(i) Let A ~ G, let W be an F[A]-module, and let V = W a = W ®F[A] F[G] be 

the induced F[G]-module. I ra  • F[G] and Y a  = O, then Y T r A ( a  ) : O. 

(ii) Suppose F[G] is semisimple, and let g and h be nonidentity elements of G. 

Then there exists an irreducible representation O ofF[G] with O(g) ~ 1 and 

O(h) # L 

Proof." (i) Let T be a transversal  for A in G with 1 E T, and write a = ~tET tat 

w i t h a t  G F[A]. I f w  C W a n d x  E G, t h e n w ® x  E V, s o 0  = ( w Q x ) a  = 

~ t ( w Q x t ) a t .  Note tha t  V = • ~-~ W ®  (xt) and tha t  each W@ (xt) is an F[A]- 

submodule of V. Thus we must  have (w ® xt)t~t = 0 for all t E T. In particular,  

when t = 1, this yields (w ® x ) a l  = 0. Consequently, V a l  = ( ~ x  W ® x ) a l  = 0 

and 7rA(a ) : a l  annihilates V. 

(ii) I f  h = g - l ,  let 3' = 1 - g, and if h ¢ g - l ,  take ff = (1 - g)(1 - h). In either 

case, we have 3' ¢ 0 and, since F[G] is semisimple, there exists an irreducible 

representat ion 0 with 0(3") ~ 0. Then  certainly, 0(1 - g) ~ 0 and 0(1 - h) :~ 0. 
| 

Now we list a few crucial special cases. Recall tha t  if a commutes  with a*, 

then uk(a) = (k - a)(k - a*) -1 is a uni tary  unit. In  the following, we use this 

formula to construct  a pair of uni tary  units in K[G]. Then we apply Proposi t ion 

2.1 to verify tha t  the two elements essentially generate a free group. W i t h  one 

exception, all the arguments  are quite similar. 

PROPOSITION 2.4: Let K be a nonabsolute field of characteristic ~ 2. I f  G is any 

of the groups listed below, then the unitary unit group ~/(K[G]) is not 2-related. 

(i) G -- (x} ~ (Yl, where (x) is cyclic of odd order prime to the characteristic 

of K ,  (Yl is cyclic of odd prime order q, and (y) acts faithfully on (x). 
(ii) G = (x, y[ x 2r = 1, y4 = 1, y - l x y  = x - I ,  x r : y2) is a quaternion group of 

order 4r, with r > 1 prime to the characteristic of K .  
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(iii) G = ( ( x }  x ( w ) )  x (y) where Ix[ = lyl = 4, I~1 = 2, ~y  = . w ,  a n d  wY = . ~ w .  

(iv) G = A >~ (y), where A is abelian of odd order pr ime to char K,  and (y} is 

a cyclic group of  order 4 acting in a fixed point free manner  on A. 

(v) G is nonabelian, IGI is pr ime to the characteristic of K,  the center of G has 

an element z with Izl > 2, and all irreducible representations of G over the 

algebraic closure of K have degree at  most 2. 

Proo[: Without  loss of generality, we can assume tha t  either K = Q is the field 

of  rationals, or K = K0 (t) is the rat ional  function field in one variable over some 

finite prime subfield K0. Write n = IGI and let F and v be given by Lemma 2.2. 

Then  F contains all n th  roots of unity, so it follows from [I1, Corollary 9.15 and 

Theorem 10.3] tha t  F is a splitting field for K[G]. In other  words, all irreducible 

representations X of FIG] are maps  to  full matr ix  rings over F .  Furthermore,  if 

g E G, then all eigenvalues of X(g) are contained in F .  

Observe that ,  by assumption,  n is prime to the characteristic of K in all cases 

expect possibly in par t  (i) when q = char K.  Thus, we split the par t  (i) a rgument  

in half, to deal separately with these two possibilities. 

(i') Here we assume tha t  q ¢ char K.  Write x y = x r for some integer r and let 

~: (x) --+ F "  be a faithful linear character.  In  particular,  if ~(x) -- ~, then I~t = Ixl 

is odd. Furthermore,  AY' (x) -- A(x y ')  -- A(x r ' )  = e r~ = ei, so e0, e l , . . - ,  %-1 are 

distinct, and consequently A, AY,. . . ,  Ayq-1 are all distinct. Note also tha t  e has 

odd order and the au tomorphism of (e} given by e ~-~ e r has odd order q, so no 

e~-i can equal an ej. Using Lemma 2.2, choose ko E K for e0 and kl C K for el. 

Since there are infinitely many  possible choices for these elements of K,  we can 

assume tha t  k0 - x and kl - x -1 are invertible in K[G]. Furthermore,  since x 

commutes  with x* = x -1,  we can set a = Uko(X)Ukl (x -1) C II(K[G]).  

Next, let 5 be an element of order q in F and, by Lemma 2.2, choose / E K 

corresponding to 5. Since there are infinitely many  such choices, we can assume 

tha t  / - y is invertible in K[G],  and we set b -- u~(y). 

We claim tha t  (a, b) involves and hence contains a nonabelian free group. To 

this end, if 0: FIG] --~ Mq(F) is the induced representat ion 0 = h c ,  then we show 

tha t  ~ = 0(a) and b = 0(b) satisfy the hypotheses of Proposi t ion 2.1. First note 

tha t  2 = O(x) = diag(e0, e ~ , . . . ,  Eq_I), so a is diagonal with its i th  entry given by 

k0 - ~i kl - C 1 

k 0 - e i  -1 k l - Q  

By Lemma 2.2, the choice of ko and kl, and the fact tha t  e71 ¢ ej, we see tha t  

v(ao) > 0, ~(al)  < 0, and ~(~)  = 0 otherwise. 
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Next, since 0 = A c ,  it follows that 

1 1 

= e ( y ) =  - . .  

1 

and hence, since q ¢ char K,  we see that ~ is similar to diag(1, 5, 52 , . . . ,  5q-l). 
Consequently, b is similar to diag(b0, b l , . . . ,  bq-1) where 

D i z g _  (~-i" 

Since both 5 and 5 -1 occur as eigenvalues of~3, Lemma 2.2 implies that u(bl) > 0, 

u(bq-t) < 0, and u(bi) = 0 otherwise. 

Finally, note that  the idempotents associated with the plus and minus spaces 

for ~ are the same as those for 2, so we can write them as (~+ = O(a+) and 

&_ = 0(a_) ,  where a+ and a_  are primitive idempotents in F[(x)]. Similarly, 

the idempotents associated with the plus and minus spaces of b can be written 

as/~+ = 0(/3+) and/~_ = 0(fl_), where fl+ and/~_ are primitive idempotents of 

E[(y)]. In particular, the identity coefficients of/~+ and fl_ are both equal to 

1/q. Hence if a C E[(x)] is either of the two idempotents for a and if fl E F[(y)] 
is either of the two idempotents for b, then 7rA(C~13) = 7rA(fia) = a/q,  where we 

set A = (x) <~ G. It follows that O/~ ~ 0 and/~O ~ 0. Indeed, if say ~/~ = 0, then 

a/3 annihilates the induced module associated with the representation 0 = A a,  

and then LemIna 2.3(i) implies that ~rA(afl) = a /q  acts trivially, a contradiction. 

We can now conclude from Proposition 2.1 that (~, b) contains a free group of 

rank 2, and consequently so does II(K[G]) _D (a, b). 

( i ' )  Now let q = char K. Since (y) acts nontrivially on (x), it acts nontrivially 

on some Sylow p-subgroup of (x). Thus, without loss of generality, we can assume 

that x is a p-element. But p ¢ q, so this action is necessarily fixed point free, 

and each nonidentity (y)-orbit on (x) has q elements. In particular, (y) acts 

nontrivially on the subgroup of (x) of order p, and again without loss of generality, 

we can assume that x has order p. 

Note that  the (y)-orbits in (x) are the conjugacy classes of G contained in (x). 

Let nx E K[G] denote the class sum for the conjugates of x, and let ~ - ~  c K[G] 
denote the class sum for the conjugates of x -1. Then g~gx-~ = ql + ~ Cz,% 
where z runs through a set of representatives for the nonidentity G-conjugacy 

classes (x). If we think of the c~, for the moment, as nonnegative integers which 
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count the multiplicity of the group element z in the product, then counting 

elements yields q2 = q + ~-~z Czq and hence q -- 1 + ~ z  cz. Thus, there are 

nonzero czs, and each is tess than q. Hence, cz ~ 0 m o d q  for some z, and 0 

t ¢ ~ - ~  E gIG]. Indeed, 0 # ~ n ~ - ~  E g[(x)] ,  so this element is not nilpotent, 

and there exists an irreducible representation 0 of FIG] with 0(n,g~-~ ) # 0. But, 

n ,  ax-1 is central, so 0 (a ,  tCx-~) = f I  with 0 # f • F.  Furthermore, since axax-~ 

is a sum of commuting elements of order p, we see that  f • F', the subfield of F 

given by Lemma 2.2(ii). 

Let A: (x) --+ F ° be an irreducible constituent of the restriction of 0 to F[(x)]. 

If  A = 1, then certainly A(a~ax-1) = 0, a contradiction. Thus A ¢ 1 and, since 

(x) is cyclic of prime order, we see that  A is faithful. The argument of (i') now 

shows that  A, AY,.. . ,  A yq-1 are distinct, so 0 = A a .  In addition, we can choose 

appropriate elements k0, kl • K so that  if a = Uko(X)Uk~ (x -1) • i l (g[G]) ,  then 

= O(a) = diag(~o, a l , . - . ,  aq-1) with v(~o) > 0, v(51) < 0, and with v(~i) = 0 

otherwise. Next, let Y = 1 + y + . . .  + yq-i • K[G]. Then, as is well known, 

y~Y = Yy i  = Y so y2  = q y  = 0. Furthermore, if 1 # z • (x), then 

q- -1  q - -1  

Y z Y  = E Yzy~ =- E YY- izYi  
i----0 i=0  

q--1 

= Y E Y - i z Y  i = Y~z,  
i=O 

and consequently, YF[G]Y C Y Z ,  where Z is the center of FIG]. Now i f7  = xY ,  

then 7" = Y ' x *  -- Y x  -1, so 7*7 = Y x  - l x Y  = y2 __ 0 and 77* = x Y Y x  -1 = O. 

In particular, if fl = ax-17 = ax-~xY, then fl*/3 = /38" = 0 and, by Lemma 

2.2, we can choose k C K for the element f E F'  so that  k - fl is invertible in 

gIG]. Then b = uk(8) E tI(K[G]), and we claim that  5 and b = t~(b) satisfy the 

hypotheses of Proposition 2.1. 

To this end, first note that  O(fl) # 0, by Lemma 2.3(i), since ~rA(/~) = g~-lX 

acts nontrivially in this representation. Next, since Y x Y  = Y ~ ,  we have 

f12 = n x _ i x y a x _ l x y  = t ~ x _ l X Y t ~ x _ l t ~  x = i~x_~l~x~, 

and hence 0(fl) 2 = 0(a~-i  t¢~)0(8) = fO(fl). In other words, O(8)/ f  is a nonzero 

idempotent in Mq(F). Furthermore, YF[G]Y c Y Z  implies that  8FIG]8 c_ 8Z. 

Hence 0(8) Mq(F)O(8) C_ FO(8), and O(8)/ f  is a rank 1 idempotent. 

In a similar manner, since /3* = ~ Y x - x ,  we see that  O(8*)/f is a rank 1 

idempotent and, of course, 88* = fl*8 -- 0 implies that  the two idempotents are 

orthogonal. Now b = (k - ~) / (k  - ~*), so it follows from the above that  b = O(b) 

is similar to the diagonal matrix diag(] ,  f - 1  1, 1 , . . . ,  1) where f = (k - f ) / k  

and v ( ] )  > 0 by the choice of k. Note that  the idempotents corresponding 
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to the posit ive and negat ive eigenspaces of b are precisely /~+ = to(f l) / f  and 

~_ -= O(~*) / f .  
Fur thermore ,  there exist idempoten ts  ~+ and c~_ in K[(x)]  such t ha t  &+ = 

~(~+) and ~)_ -- to(c~_) are the idempoten ts  corresponding to the posit ive and 

negat ive eigenspaces of ~. To show, for example,  tha t  ~+/~+ # 0, it clearly suffices 

to prove t ha t  (~+to(/~) = 0(c~+)0(/~) -- to(c~+/~) is nonzero. But ,  recall t ha t  the 

representa t ion 0 is induced from (x) = A < G ,  and tha t  ~A(fl) = g x - l x  acts as an 

invertible linear t ransformat ion .  Thus  to(7~A(C~+/3)) = to(o~+rA(fl)) = 6+to(rA(fl))  

is not zero, and hence by L e m m a  2.3(i) nei ther  is &+/~+. The  remaining seven 

idempoten t  products  can clearly be handled in a similar manner ,  so we conclude 

f rom Proposi t ion  2.1 t ha t  (a, b) contains the nonabel ian  free group 52. 

(ii) Let A: (x) --+ F ° be a faithful linear charac ter  and let to = )~c be the induced 

representa t ion  to: F[G] --+ M2(F) .  Since Ix] _> 4, we see tha t  ~Y = A -1 # )~, and 

hence to is irreducible. Fur thermore ,  0(x) = diag(c, e -1)  for some ~ c F of order 

Ixl = 2r and, since to(y:) = to(x ~) = d i a g ( - 1 ,  - 1 ) ,  it follows tha t  to(y) is similar to 

d i a g ( i , - i ) ,  where i 2 -~ - 1 .  By L e m m a  2.2, we can choose k C K corresponding 

to e wi th  k - x invertible in K[G],  and we can choose / E K corresponding to i 

wi th  t - y invertible in K[G]. We claim tha t  the subgroup of I2(K[G]) genera ted 

by a = Uk(X) and b = ut (y )  contains a free group of r ank  2. Indeed, note  tha t  

O(a) = d iag( f l ,  f~-l) ,  where f l  = (k - e ) / (k  - e -1)  satisfies u( f l )  > 0, and to(b) 

is similar to diag(f2,  f21) ,  where f2 = (~ - i ) / ( i  + i) satisfies v(f2)  > 0. Finally, 

if the idempoten t  condit ion does not hold, then since m = 2, to(x) and O(y) 

would have a c o m m o n  eigenvector, contradict ing the fact tha t  to is an irreducible 

representat ion.  Thus  the idempoten t  condit ion is satisfied, and Proposi t ion  2.1 

yields the result. 
(iii) First  note tha t  (xy) 2 = y 2 ( y - 2 x y 2 ) ( y - l x y )  -- y 2 x - l x w  = y2w ¢ 1 and 

tha t  ( x y )  4 = ( y 2 w ) 2  = y4w2 = 1. Again let i E F with  i s = --1 and choose k E K 

corresponding to i, and with k - y and k - xy  b o t h  invertible in K[G]. We claim 

tha t  the subgroup of 12(K[G]) generated by the units  a = uk(y)  and b = uk(xy)  

contains a free group of rank 2. To this end, let )~ be the linear character  of 

A = (x) × (w) given by A(x) = i and A(w) = 1. Then  AY(x) = A(x y) = A(xw) = i, 

)~Y2(x) : ~(X y2) = ~(X -1) = --i and )~Y3(x) = )~(x y3) = )~(x- lw)  = - i .  In  

par t icular ,  if 8: F[G] ~ Mn(F)  is the induced representat ion tO = , ~ ,  then 

to(x) = diag(i,  i, - i ,  - i ) ,  so 

1 

to(y)= 

1 

1 
1 

and to (xy)= i - i  " 

- i  
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Since G can also be written as A x  (xy>, we see that  both O(y) and O(xy) are similar 

to diag(1, i, -1 ,  - i ) ,  and therefore both a and b are similar to diag(1, f ,  1, f - l )  

where f -- (k - i ) / ( k  + i). By Lemma 2.2, ~,(f) > 0 and , ( f - l )  < 0. 

It remains to check the idempotent condition. Here 

a+ = ~[1 + i-10(y) + i-20(y) ~ + i-30(y)3], 
I 

5 _  = + i e ( y )  + i e(y) 2 + i30(y)3], 
I 

= 111 + i - l e ( x y )  + i- e(xy) 2 + i-30(xy)3], 
I 

= + iO(xy) + i  (xy) + i3O(xy)3], 

so it is a simple matter  (using computer algebra software) to determine these 

matrices and to verify that all appropriate eight products are nonzero. Indeed, 

each entry in each product is nonzero, so it suffices to check only the (1, 1)-entry. 

With this, Proposition 2.1 yields the result. 

(iv) By assumption, (y2) acts fixed point free on the abelian group A of odd 

order. Hence y2 must act in a dihedral manner on A. In particular, if #: A --+ F ° 

is any linear character, then #Y~ = #-1 and ker/z y2 -- ker#  -1 -- ker#. Note also 

that (y) acts fixed point freely on the nonprincipal linear characters of A. 

Now let A be a fixed nonprincipal linear character of A, so that A, A y, A y2, A y3 

are all distinct. If ker A = ker A y, then all four characters have the same kernel. 

In particular, if we choose x E A to generate the cyclic quotient A/(kerA), 

then the four values AY'(x) must be distinct. Thus, setting ~ = A G, we see 

that 0(x) -- diag(e, e -1, 5, 5 -1) with all eigenvalues distinct. On the other hand, 

if kerA ~ kerA u, then we can take x E kerAY\kerA.  In this case, O(x) = 
diag(e, e -1, 1, 1) with e ~ e -1. Thus in either case, we have an element x E A 

satisfying O(x) = diag(e, ¢-1, 5, 5 -1) with c ¢ e -1, 5, 5 -1. Now, by Lemma 2.2, let 

k E g correspond to ~ with k - x  invertible in K[G], and set a = Uk(X) E ~I(K[G]). 

Then O(a) = diag(~l, a~ -1, a2, a21) with ~(al) > 0 and v(~2) = 0. 

Of course, O(y) is similar to d iag( i , - i ,  1 , - 1 )  where i s = -1 .  So if ~ E K 

corresponds to i, then b = ut(y)  E i/(K[G]), and we see that 0(b) is similar to 

diag(b, ~-1, 1, 1) with ~,(b) > 0. Since ~ is induced from A and since a E K[A], 

Lemma 2.30) implies, as usual, that the idempotent condition is satisfied. We 

therefore conclude from Proposition 2.1 that (0(a), 0(b)) contains a nonabelian 

free group, and hence the same is true of l l(g[G]).  

(v) Choose x, y E G with commutator w = Ix, y] ~ 1. It clearly suffices to 

assume that G = (x, y, z}. Since w, z 2 ~ 1, it follows from Lemma 2.3(ii) that 
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there exists an irreducible representation 0 of F[G] with O(w) ¢ 1 and 0(z 2) ~ 1. 

Note that [0(x), 0(y)] = O(w) ¢ 1, so O(x) and O(y) are not central. In particular, 

deg 0 > 1 and consequently, by assumption and the fact that F is a splitting 

field for K[G], we have deg0 = 2 and 0: F[G] --+ M2(F). Write O(z) = diag(5, 5). 

Since 0(z 2) ¢ 1, we know that  5 2 ¢ 1, so the three elements 1, 5, and 5 -1 are 

distinct. 

For convenience, let us assume that O(x) is diagonal. Say O(x) = diag(e~, e~) 

with e~ ~ e~ since O(x) is not central. Now 1, 5, 5 -1 are distinct, so we can choose 

i = 0, 4-1 so that if x l  = x z  ~, then O(xl) = diag(el, ~1) with e1 ¢ ±1. Similarly, 

there exists x2 = xz  j so that  0(x2) = diag(g2, e2) with e2 ~ +1. If ~ = e~-~, 

let a = ukl(Xl)  where kl C K corresponds to q .  If el ¢ e~-i but e2 = e -1 2 , 

let a = Uk2(X2) where k2 E K corresponds to e2. Finally, if gl 7 ~ el -1 and 

g2 ~ %1, take a = ukl (xl)uk2(x2) -1 where kl E K corresponds to q and k2 E K 

corresponds to ~2. In all cases, we see that  a C iI(K[G]), and O(a) = diag(al ,  a2) 

with u(a l )  > 0 and v(c~2) < 0. 

In a similar manner, by temporarily diagonalizing O(y), we construct a unit 

b E I/(K[G]) determined by y and z. Note that the eigenspaces of O(a) are those 

of 0(x), and the eigenspaces of O(b) are those of O(y). Thus, if O(a) and O(b) have 

a common eigenspace, then this would yield a subspace stable under the action 

of G = (x, y, z}, contradicting the fact that 0 is irreducible. Therefore, since 

m = 2, the idempotent condition for O(a) and O(b) is satisfied, and we conclude 

from Proposition 2.1 that the free group ~2 is involved in <a, b>. | 

We need two more concrete examples. For these, we must first briefly discuss 

GL2(K) and Oh(K), where O3(K) is the set of 3 x 3 matrices X with x T x  = 
I. In other words, O3(K) is the unitary group (really the orthogonal group) 

corresponding to the transpose involution. The following is well known. 

LEMMA 2.5: Let K be a nonabsolute field of characteristic ¢ 2. Then GL2(K) 

and 03 (K) contain nonabelian free groups. 

Proof'. Let G be the quaternion group of order 8. Then 

K[G] = K ® K G K OK @ Q(K) 

where Q(K)  is the usual quaternion algebra with K-basis {1, i, j, k} and relations 

i 2 = j2 = k 2 = - 1 ,  i j  = k, j k  = i and ki = j .  Since tI(K[G]) is not 2-related, by 

Proposition 2.4(ii), it follows that the unit group b/(K) of Q(K)  has a nonabelian 

free subgroup. 
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Let P ( K )  = {hi + flj + "~k I a,  fl, 7 E K} be the 3-dimensional space of pure 

quaternions. T h e n / g ( g )  acts on P ( K )  by conjugation, and this gives rise to 

a homomorphism 8: b/(K) --+ GL3(K).  It  is easy to check tha t  the image is 

contained in o 3 ( g ) .  Indeed, let u 6 b/(K), let a,b 6 { i , j , k }  and let t r :  Q(K) --+ 

K denote the usual trace map. Since a 2 = b 2 = - 1 ,  the matrix entries satisfy 

O(u)~,b = -- t r (u- l  aub) = - tr(ubu-l  a) = O(U-1)b,a. 

Thus 8(u) -1 -- O(u -1) = 0(u) T, and 0: /¢(K)  --~ O3(K).  Since the kernel of 8 is 

clearly equal to L/(K) N K ' ,  it follows from the remarks of the previous paragraph 

that  O3(K) contains a nonabelian free group. 

Finally, if e h a r g  > 0, then Q(K) TM M2(K), so b / (g )  ~ GL2(K) and GL2(K) 

contains a copy of 52. On the other hand, if char K -- 0, then [S] supplies concrete 

generators for a rank 2 free subgroup of SL2(Z). | 

With this in hand, we can now prove 

LEMMA 2.6: Let K be a nonabsolute t~eld of characteristic ~ 2 and let G = 

A ~ (x>, where A is abelian of order prime to the characteristic of K and (x} is 

cyclic of pr ime order q > 2. I f  (x> does not normalize all subgroups of A, then 

~ ( g [ a ] )  is not 2-related. 

Proof: Since A is abelian, both  (x) and * permute the finitely many primitive 

idempotents of K[A]. Indeed, if e is such an idempotent,  then (e~) * = (x - l ex )  * = 
x*e*(x-1) * = x - l e*x  = (e*) ~, so the actions commute. Furthermore, each 

idempotent of K[A] is uniquely a sum of primitives. Now, by assumption, (x / 

does not normalize some subgroup B of A. Hence (x} does not fix the principal 

idempotent eB of K[B], and consequently (x/ does not fix at least one of the 

primitive idempotent summands of eB. 
Now let e be any primitive idempotent of K[A] that  is moved by x. Then 

the element f = e + e ~ + - .-  + e ~q-1 is a sum of q orthogonal idempotents, and 

hence it is an idempotent in K[A] which is clearly central in K[G]. Note that  

• permutes the {x)-orbits of primitive idempotents, so there are two cases to 

consider according to whether * fixes {e, e~ , . . . ,  e ~q-1 } or not. 

Suppose first that  • fixes the orbit. Then fK[G] is a .-stable direct summand of 

K[G], and it suffices to show that  the group tI(fK[G]) is not 2-related. Note that  

• has order 2 and permutes the set {e, eX, . . . ,  e xq-~ } containing an odd number 

of elements. Thus * must fix at least one member  of this set, say e. Next, observe 

tha t  ( fx )  is a group of units of order q in fK[G] that  transitively permutes the 

set {e ,e~, . . . ,e~q-1}.  Furthermore, the latter idempotents are the summands 
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of an orthogonal decomposition of f ,  the identity of fK[G]. Thus, if we define 

ei,j = x -Jex  ~ for i , j  = 0, 1 , . . . , q  - 1 then, by the proof of [P, Lemma 6.1.6], 

{eid} is a set of matr ix  units for Mq(K),  a g -suba lgebra  of fg[G].  Indeed, since 

e*j = (x-Jexi)  * = x - i e x  j = ej,i, we see that  Mq(K) is . -s table with • acting 

as the transpose. Thus ~I(fK[G]) D ~I(Mq(K)) = Oq(g) D_ o 3 ( g ) .  But o 3 ( g )  

contains a free group of rank 2, by the previous lemma, so this case follows. 

On the other hand, suppose that  * moves the orbit {e, eX, . . . ,  e xq-1 }. Then it is 

clear that  f* is orthogonal to f ,  and hence that  S = fK[G] @f*K[G] is a *-stable 

direct summand of K[G]. Again, it suffices to show that  ~I(S) is not 2-related. 

Now, as above, we know that  fK[G] contains a subalgebra isomorphic to Mq(K).  

With this, we get an embedding of GLq(K) into ll(S) given by u ~-+ u • (u*) -1. 

Thus ~I(S) contains an isomorphic copy of GLq (K) _D GL2 (K),  and hence Lemma 

2.5 implies that  it contains a free group of rank 2. This completes the proof. | 

The next argument is similar, and even quicker. Note that,  if IGI is prime 

to the characteristic of the algebraically closed field F,  then the representation 

theory of F[G] mirrors that  of the complex group algebra C[G]. 

LEMMA 2.7: Let K be a nonabsolute field of characteristic ~ 2 and let F denote 

its algebraic closure. Suppose G is a 2-group with a normal elementary abelian 

subgroup A of index 4. I f  F[G] has an irreducible representation of degree > 2, 

then is not 2-related. 

Proof: By assumption, G has an irreducible character X with deg)/_> 4. If )~ 

is an irreducible constituent of XA, the restriction of )/ to A, then A is linear 

and Frobenius reciprocity [I1, Lemma 5.2] implies that  X is a constituent of the 

induced character A v of degree 4. Thus X = A¢ has degree 4. Furthermore, 

we know that  G/A transitively permutes the irreducible constituents of XA, and 

it is now clear that  G/A must act regularly. Indeed, if this were not the case, 

then there would exist a subgroup B _D A fixing A, with IB : A I = 2. But then 

the image of A is central in the representation associated with AB, so AB would 

split into two linear constituents, and then X = AG = (AB)G would also split, a 

contradiction. 

Let e be the primitive idempotent of F[A] corresponding to A. Since A is an 

elementary abelian 2-group, A: A --+ {+1} and hence e C K[A]. Furthermore, * 

acts trivially on K[A], so c* = c. Now let Xl, x2, x3, x4 be coset representatives for 

A in G. Then f = e xl + e x2 + e ~3 + e ~4 is a sum of four orthogonal idempotents, 

and hence f is a . -s table central idempotent of K[G]. In addition, if we set 

ei,j = x-flexi, then the proof of [P, Lemma 6.1.6] implies that  {ei,jl i , j  = 
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1, 2, 3, 4} is a set of matr ix  units in fg[G].  Thus fg[G]  D_ M4(K) and, since 

e*,j  = ( x y l e x i )  * ---- x ~ l e x j  ---- e j , i ,  we see that  i l(fK[G]) D_ O4(K) _D O 3 ( K ) .  

Thus, by Lemma 2.5, l l(fK[G]) contains the free group ~2, and hence the same 

is true for I2(K[G]). | 

§3. G r o u p - t h e o r e t i c  r e d u c t i o n s  

In this final section, we complete the proof of Theorem 1.3 by showing that  if 

i.i(K[G]) is 2-related, then G has the appropriate structure. We proceed in a 

series of steps, each step being proved by induction. Specifically, we know by 

Lemma 1.2 that  if ~{(K[G]) is 2-related, then so is ~2(K[H]) for every subgroup 

and every homomorphic image H of G. Thus, we are able to assume at each step 

that  all proper subgroups and homomorphic images of G satisfy the conclusion 

of the step. In particular, if G is a minimal counterexample, then we are able to 

show that  G is one of the handful of special cases considered in Proposition 2.4, 

Lemma 2.6 and Lemma 2.7. We start  with 

LEMMA 3.1: Assume that ~2(K[G]) is 2-related. I f  G is a q-group for some odd 

prime q different from the characteristic of K,  then G is abelian. 

Proof: Let G be a minimal counterexample to the conclusion. Then G is a non- 

abelian q-group having all proper subgroups and homomorphic images abelian. 

The structure of such minimal nonabelian groups is well known, and a quick 

derivation of this result is included in the argument below. First, G is not cyclic, 

so it has two distinct maximal subgroups A and B, each normal of index q. By 

assumption, A and B are abelian and, since A A B is centralized by G = AB ,  

we see that  Z = Z(G) = A N B has index q2 in G with G / Z  abelian of period 

q. Next, let J be a central subgroup of G of order q. Then G / J  is abelian, so 

G ~ C_ J ,  and hence G t -- J .  Thus J is unique and Z is cyclic of order, say, qn. 

Since q ¢ 2 and G ~ is central of period q, the q-power map a: x ~-~ xq is a 

homomorphism into Z. In particular, if H is the kernel of a,  then H is normal 

in G and consists of all elements of G of order 1 or q. If  a is onto Z, then 

G has a cyclic subgroup C of order qn+l and hence of index q. Furthermore, 

[H I = q2 and IH N C[ = q, so G -- C )~ (y) for some element y of order q. But 

this group cannot occur, by Proposition 2.4(i), and thus a is not onto. It  follows 

that  a(G) =- a(Z)  -- Zq, so G -- Z H  and H is nonabelian. By the minimal 

nature of G, we see that  G -- H is a nonabelian q group of order q3 and period 

q. But this group has the structure described in Lemma 2.6, so again we obtain 

a contradiction. | 
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More to the point, we now prove 

LEMMA 3.2: If£I(K[G]) is 2-related, then G has subgroups P c T C G with 

(i) P is a normal Sylow p-subgroup of G with p equal to the characteristic of 

K. By convention, P = 1 if char K = 0. 

(ii) T is a normal 2-complement of G, so that T has odd order and G/T is a 

2-group. 

(iii) T / P  is abelian. 

Proof: Note that  a normal Sylow subgroup and a normal Sylow complement 

are necessarily characteristic subgroups. Assume by way of contradiction that  

the result is false, and let G be a counterexample of minimal order. Then every 

proper subgroup and homomorphic image of G satisfies the conclusion of this 

lemma. We proceed in a series of steps. 

STEP 1: G has no proper normal subgroup of order divisible by p = cha rK.  

Furthermore, G has no proper homomorphic image of even order. 

Proo~ Suppose N is a proper normal subgroup of order divisible by p. Then N 

has a nonidentity characteristic p - subgroup /5  so /5  < G. Since G//5 satisfies the 

conclusion of this lemma, it is clear that  G does also, a contradiction. 

Oil the other hand, suppose that G has a proper homomorphic image G of 

even order. Then G has a nonidentity 2-group as a homomorphic image, and 

hence so does G. In other words, there exists M ~a G with G/M a nonidentity 

2-group. Since M satisfies the conclusion of this lemma, it is now clear that  G 

does also, again a contradiction. | 

STEP 2: G has odd order. 

Proof" If  G has even order, then it follows from Step 1 that  G does not have 

a norinal 2-complement. On the other hand, every proper subgroup of G does 

have a normal 2-complement. Thus, by Frobenius' theorem [H, Satz IV.5.8(b)], 

G must have a nonidentity normal 2-subgroup, and we choose A to be such a 

subgroup of minimal order. By Step 1, G/A has odd order, so A is a Sylow 2- 

subgroup of G. Furthermore, G/A is solvable, so there exists a normal subgroup 

H of G with A C_ H C_ G and G/H cyclic of odd prime order q. 

By the minimal nature of G, H has a normal 2-complement T and T ~ G. 

But G/T has even order, since T n A = 1, so Step 1 imtflies that  T = 1 and 

H = A. In other words, G = A ~ {y) where A is a 2-group and (y) is cyclic 

of odd prime order q. Furthermore, the minimal nature of A guarantees that  A 
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has no proper characteristic subgroup. Thus A is an elementary abelian 2-group 

and (y) acts irreducibly on A. If IA] = 2, then (y) acts trivially, so (y} ,~ G 

and G/(y) -~ A, contradicting Step 1. Thus IAI > 2 and A has nonidentity 

subgroups not normalized by (y}. Thus G satisfies the assumptions of Lemma 

2.6, contradicting the fact that II(K[G]) is 2-related. | 

STEP 3: Final contradiction. 

Proof: A repetition of the above argument will yield the result. We now know 

that  G has odd order. Furthermore, any group of odd order satisfying the con- 

clusion of this lemma has a normal q-complement for every prime q different 

from p = char K. Conversely, suppose that  G has a normal q-complement C a 
for each prime divisor q of IGI different from p. Then ~q Cq is a normal Sylow 

p-subgroup of G and hence, by Step 1, ~qCq = 1. It then follows that G is 

nilpotent of odd order prime to p, and consequently Lemma 3.1 implies that G 

is abelian, a contradiction. 

Thus, for some prime t dividing IGI and different from char K,  G does not 

have a normal t-complement. Indeed, G has no proper homomorphic image of 

order divisible by t. To see this, suppose G is such a homomorphic image with 

t dividing IGI. Then G has a normal t-complement, so it has a nonidentity t- 

group as a homomorphic image. It follows that there exists M ,~ G with G/M a 
nonidentity t-group. But M has a normal t-complement N,  and N is surely a 

normal t-complement in G, contradiction. 

Since every proper subgroup of G has a normal t-complement, Frobenius' theo- 

rem [H, Satz IV.5.8(b)] implies that G has a nonidentity normal t-subgroup, and 

we choose A to be such a subgroup of minimal order. By the above observation, 

G/A has order prime to t, so A is a Sylow t-subgroup of G. Furthermore, G/A is 

solvable, so there exists a normal subgroup H of G with A c_ H C_ G and G/H 
cyclic of odd prime order q ¢ t. 

By the minimal nature of G, H has a normal t-complement T and T ,~ G. But 

G/T has order divisible by t, since T N A = 1, so the above observation implies 

that T - -  1 and H = A. In other words, G = A ~  (y) where A i s  a t -g roup  

and (y) is cyclic of odd prime order q ~ t. Furthermore, the minimal nature 

of A guarantees that A has no proper characteristic subgroup. Thus A is an 

elementary abelian t-group and (y) acts irreducibly on A. If (Y/ acts trivially, 

then (y} ,~ G and G/(y) ~ A, contradicting our comments about the possible 

homomorphic images of G. Thus (Y/must act faithfully on A. 

Finally, if A is not cyclic, then A has nonidentity subgroups not normalized 



Vol. 125, 2001 UNITARY UNITS IN GROUP ALGEBRAS 149 

by (y). Thus  G satisfies the assumpt ions  of L e m m a  2.6, contradict ing the fact 

tha t  ~t(K[G]) is 2-related. On the o ther  hand,  if A is cyclic, then  G is the type  

of group considered in Proposi t ion  2.4(i), and again we obta in  the necessary 

contradict ion.  | 

For the next  step, it is convenient to first isolate the following fact. 

LEMMA 3.3: Let G be a 2-group with center Z of index 8, and assume that every 

nonabelian homomorphic image of G has a center which is an elementary abelian 

2-group. Then G has an abelian subgroup of index 2. 

Proof." Assume, by way of contradict ion,  tha t  G has no abel ian subgroup of 

index 2. Then  certainly G / Z  has no elements  of order 4. I t  follows tha t  G / Z  is 

an e lementary  abel ian 2-group, and hence tha t  G has class 2. By assumpt ion,  

Z is an e lementary  abel ian 2-group. Suppose g C G \ Z .  I f  [G : Cc(g ) l  = 2, 

then C(g) is clearly an abel ian subgroup of G of index 2, a contradict ion.  Thus  

IG : C(g)l = 4 and hence the c o m m u t a t o r  group [g, G] has order 4. In  part icular ,  

we have [G' I _> 4. 

Let x, y, z generate  G / Z  and let u, v and w be the three commuta to r s  u = Ix, y], 

v = Iv, z], w = [z, x]. Then  u, v, w generate  G ' ,  so IG'I _< S. I f  IG'[ = 4, we note 

tha t  the result of the previous pa rag raph  yields [g, G] -- G I for all g c G \ Z. 

In this case, if T is any subgroup of G I of order 2, then  G / T  is a group with 

c o m m u t a t o r  G~/T of order 2 and with center Z / T  of index 8. As is well known, 

this cannot  occur. For example,  let ~ and ]~ be elements  of G = G / T  which do not 

commute .  Then  CG (~) and CG (h) are dist inct  abel ian subgroups of G of index 

2, and hence C¢ (~)N C G (h) is a central  subgroup of G of index 4, contradict ion.  

Thus  u, v, w generate  an e lementary  abel ian 2-group of order 8. 

Again, let g c G \ Z. Since [g, G] has order 4, this group is proper ly  smaller  

than  G ~. Hence G/[g, G] is nonabelian,  so its center is an e lementary  abel ian 

2-group by hypothesis.  But  the image of g is contained in this center, so we 

conclude tha t  g2 • [g, G] for all such g. In part icular ,  we must  have x 2 = u~w ~, 

y2 = U~V ~ and z 2 = VaT ~ for suitable exponents  a ,  fl, 7, & a, v • {0, 1}. Now, 

let g = x~ybz ~ • G \ Z. Then  [g, x] = u-bw ~, [g, y] = u~v -~ and [g, z] = w-~v  b 

generate  [g, G], so we see tha t  [g, G] = {urv~wt Irc  + sa + tb -- 0 rood 2}. Next ,  

observe tha t  
g2 = xa yb zc.xa yb z c = xa yb.xa zc.yb zc.[ z c, X a] 

= 

_~ x2a y2b z2c.?~-ab ~-bcllj ac 

1~(ao~-~b'7-ab)v(b~-ca-bc)w(afl~-cT"~-ac)" 
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In particular, since g2 E [g, G], we have 

0 - c(aa + b~/- ab) + a(b(~ + ca - bc) + b(a/~ + CT + ac) 

---- ab(5 + fl) + ac(a + a) + bc(7 + T) -- abc mod 2 

and this holds for all choices of a, b, c not all 0. Now, with a = b = 1 and c = 0, 

we deduce that  f l + 5  = 0. Similarly, a = e =  1, b =  0 y i e l d s a + a  = 0, and 

b = c = 1, a = 0 implies that  7 + r = 0. Thus the above displayed equation 

simplifies to 0 = - abcmod2 ,  a contradiction when a -- b = c = 1. I t  follows that  

G has an abelian subgroup of index 2, as required. | 

Now if~l(K[G]) is 2-related then Lemma 3.2 implies that  G has a normal Sylow 

p-subgroup P for p = char K.  Furthermore, by Lemma 1.2, II(K[G/P]) is also 

2-related. Thus, for most of the remainder of this paper, it suffices study G / P ,  

or equivalently we can assume that  IGI is prime to the characteristic of K.  The 

next major  step in the proof of Theorem 1.3 is 

LEMMA 3.4: I f  ~I(K[G]) is 2-related and if  IGI is prime to the characteristic of 

K,  then either G is abelian or it has an abelian subgroup of index 2. 

Proof." Assume by way of contradiction that  the result is false, and let G be a 

counterexample of minimal order. Then every proper subgroup and homomorphic 

image of G satisfies the conclusion of this lemma. Let F denote the algebraic 

closure of K.  We proceed in a series of steps. 

STEP 1: G has the following properties. 

(i) I f  H is a proper subgroup or homomorphic image of G, then either H is 

abelian or Z (H)  is an elementary abelian 2-group. 

(ii) F[G] has an irreducible representation of degree > 2, and Z(G) is cyclic. 

(iii) G has no normal cyclic subgroup of order 4. 

Proof: (i) If  H is a proper subgroup or homomorphic image of G, then H 

is either abelian or has an abelian subgroup of index 2. Thus, all irreducible 

representations of F[H] have degree _< 2, and Proposition 2.4(v) yields the result. 

(ii) If  all irreducible representations of F[G] have degree _< 2, then a theorem of 

Amitsur (see [I1, Theorem 12.11] or [P, pages 263-264]) implies that  either G has 

an abelian subgroup of index < 2 or IG : Z(G)I = 8. By assumption, the former 

case does not occur. If the latter case occurs, then Z(G) is an elementary abelian 

2-group by Proposition 2.4(v). Thus, by (i) above, G satisfies the hypotheses of 

Lemma 3.3, and G has an abelian subgroup of index 2, contradiction. 



Vol. 125, 2001 UNITARY UNITS IN GROUP ALGEBRAS 151 

It follows that FIG] has an irreducible representation of degree > 2, and any 

such representation must be faithful on G. Otherwise, it corresponds to a rep- 

resentation of F[H] for some proper homomorphic image H of G, and we know 

that F[H] has all representations of degree _< 2. In particular, Z(G) is cyclic. 

(iii) Suppose that L is a normal cyclic subgroup of G of order 4. Then 

I Aut(L)l = 2, so tG:  CG(L)I _< 2. If CG(L) has index 2, then Ca(L)  is abelian 

by (i) above, a contradiction. Thus, L must be central. Now if 8 divides IGI, 

then Lemma 3.2 implies that G has a normal subgroup H of index 2 containing 

L, and again H is abelian. On the other hand, if 8 does not divide IGI, then 

Lemma 3.2 implies that G = L × A is abelian, where A is the normal abelian 

2-complement of G. | 

STEP 2: G is a 2-group. 

Proof'. Let A be the normal abelian 2-complement of G given by Lemma 3.2, 

and assume that A ¢ 1. Note that IG/AI >_ 4 since G does not have an abelian 

subgroup of index _< 2. Let C = Cc (A) < G. We know that G has a normal 

subgroup H of index 2, and that H has an abelian subgroup H0 of index _~ 2. 

Since A C H0, it follows that H0 C_ Cc (A) = C, and hence that IG : C I -- 1, 2, 

or 4. If IG : CI = 2, then C is abelian by Step 1(i), and if IG : C I -- 1, then H is 

abelian by the same result. Thus we must have IG : C I = 4. 

Let L be any subgroup of G with L 2 C and IL : C I = 2. Then A N Z ( L )  = 1 

by Step 1 (i), so L/C acts fixed point freely on the abelian group A of odd order, 

and hence L/C acts in a dihedral manner. Thus, L must be the unique such 

group, and consequently G/C is cyclic of order 4. Finally, let y be a 2-element 

of G generating the quotient G/C, and consider the subgroup of G given by 

(A, y) = A >~ (y). Then y4 is central in this group, so G = (A, y>/<y4> ~_ A >~ (~> 
is involved in G. But ~A(K[G]) is not 2-related, by Proposition 2.4(iv), and hence 

we have the required contradiction. | 

STEP 3: Final contradiction. 

Proo[: We now know that  G is a 2-group and, by Step l(ii)(iii), J = Z(G) 

has order 2. It follows from the minimal nature of G that G/J  has an abelian 

subgroup H/.] of index 2, and since H is nonabelian, we have H' = J. Further- 

more, H has an abelian subgroup B of index 2, and hence H = (B, t) for some 

t E H. Note that the conmmtator map b ~-~ [b, t] is a homomorphism from B 

onto H' with kernel Z = Z(H).  Thus, since IH'I = 2, we see that  IB : Z I = 2 and 
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IH : Z I = 4. By Step 1(i), Z is an e lementary  abel ian 2-group, and the group 

G / H  -- {1, ~} of order 2 acts on Z wi th  Cz  (~0) = Z(G) .  Since each Jo rdan  block 

for the ma t r ix  representat ion of ~ yields a fixed point  and since IZ(G)I = 2, there 

can be only one such block and [ZI < 4. If  IZI = 2, then IUl = 8 and H must  

be the dihedral  group by Proposi t ion 2.4(ii). But  then H has a characteris t ic  

cyclic subgroup of order 4 and this yields a normal  cyclic subgroup of G of order 

4, contradic t ing Step l(iii). I t  follows tha t  IZI -- 4, IHI = 16 and IGI = 32. 

Now Z C H C_ G is a normal  series for G, so there exists A ,~ G with  Z C 

A C_ H and IA : Z I = 2. Clearly A is abel ian and, since Z is abel ian of type  

(2, 2), we see tha t  A is abel ian of type  (2, 2, 2) or (4, 2). In the first case, since 

[G/AI = 4, we obta in  a contradict ion from Step l(ii) and L e m n m  2.7. Thus,  

we can assume tha t  A is type  (4,2), and we can now complete ly  describe the 

group G. To s tar t  with, let A = ( x , w ) - -  (x) × (w) with I x l - -  4 and Iwl = 2. 

Since A 2 = (x 2) ,~ G, it follows tha t  A 2 = Z(G)  = H ' .  Fur thermore ,  we know 

tha t  Z -- Z ( H )  -- (x 2, w) since Z is e lementary  abelian. In part icular ,  if we set 

H = (A,h) ,  t h e n x  h = x . x  2 = x -1 and w h = w.  Also, h ~ E Z = (x 2,w),  so 

there are four possibilities. If  h 2 : x 2, then  (x, h) is isomorphic to the quaternion 

group of order 8, contradict ing Proposi t ion 2.4(ii). On the other  hand,  if h 2 -- w 

or x 2 w ,  and if 2 = (x2w)  or (w), respectively, then H/2 is isomorphic to the 

qua tern ion  group of order  8, again a contradict ion.  Thus  h 2 = 1 and H = A )~ (h) 

is a dihedral  group and, in part icular ,  every element of H \ A has order 2. 

Finally, let G = (H, y). Since (x) ~ H and (x) ~d G, by Step l(iii), we mus t  

have x y = x w  or x ( x 2 w ) .  But  A = (x) x (w)  = (x) × (x2w) ,  so wi thout  loss of 

generality, we can assume tha t  x y = x w .  Furthermore ,  w is not central  in G, but  

it is central  in G / J  since I Z / J I  -- 2, so w y .= x2w.  Next,  observe t ha t  y2 E H 

and tha t  x y~ -- x Y w  y = x w x 2 w  = x -1 ,  so y2 E H \ A. Hence y2 has order  2 and 

y h a s o r d e r  4. I t  follows tha t  G = A)4 (y) w i t h A - -  (x) × (w), Ixl = lYl = 4, 

Iwl = 2, x y -~ x -1 ,  and w y = x2w.  In other  words, G is the group of Proposi t ion  

2.4(iv) and we conclude tha t  I I (K[G])  is not 2-related. | 

We can now complete  the proof  of the main  result. Specifically, we offer the 

P r o o f  o f  the  hard d irec t ion  o f  T h e o r e m  1.3: Here we assume tha t  I I (K[G])  is 

2-related. The  goal is to show tha t  G has the s t ructure  given in par ts  (i) and 

(ii) of the s t a t ement  of the theorem. To s ta r t  with, by L e m m a  3.20),  G has a 

normal  Sylow p-subgroup with p = char K .  Thus,  since I I ( K [ G / P ] )  is 2-related, 

it suffices to s tudy  G / P .  Equivalently, we can now assume tha t  P -- 1 so tha t  ]G[ 

is pr ime to the characterist ic  of K .  If  G is abelian, the result is proved. Therefore,  

by L e m m a  3.4, we can assume tha t  G has a noncentral  abel ian subgroup A of 
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index 2. We must show that either A has period 2, that is A s = {a2[ a C A} = 1, 

or that G = A ~ (x) is dihedral. Note that,  i fG  = (A,g}, then g2 C Z(G) and, for 

any a E A, we have (ag) 2 = ag2g-lag = aagg 2. In other words, G is dihedral if 

and only if (G \ A) 2 = {b21 b e G \ A} = 1. Note also that if F is the algebraic 

closure of K,  then all irreducible representations of FIG] have degree _< 2. Thus, 

by Proposition 2.4(v), Z(G) is an elementary abelian 2-group. For convenience, 

we split the argument into three cases. 

CASE 1: If  G has at least two distinct abelian subgroups of index 2, then G has 

precisely three abelian subgroups of.index 2, [G : Z(G)] = 4, and G' has order 2. 

Furthermore, G has an elementary abelian subgroup of index 2. 

Proof If A and B are distinct abelian subgroups of G of index 2, then Z = ANB 

is central in G = AB. Hence Z = Z(G) has index 4 in G, and in fact G/Z is 

abelian of type (2,2). Furthermore, all abelian subgroups of G of index 2 contain 

Z, so there are precisely three such, say A1, A2, A3. Note that G = (Z, x, y) for 

some x, y, and that Ix, y] E Z has order 2. Thus, since G is abelian modulo 

(Ix, y]), it follows that G' = ([x, y]) has order 2. 

We prove by induction that at least one of A1, A2, A3 has period 2. Suppose 

first that [Z[ _> 8, and choose four distinct central subgroups J1, J2, J3, J4 differ- 

ent from G ~. Then G/Ji is nonabelian and has three abelian subgroups of index 

2, namely A1/J,, A2/J~ and A3/Ji. Thus, by induction on [G[, there exists a 

subscript f ( i )  E {1, 2, 3} such that  (Al(i)/Ji) 2 = 1 or equivalently (Af(i)) 2 C_ Ji. 

Since there are four Jis and only three Aks, there must exist i ~ i t and k with 

A~ c Ji N Ji, = 1, as required. 

Thus we can assume that ]Z[ < 4. If IZ[ = 2, then G is nonabelian of order 8 

and, since G is not quaternion by Proposition 2.4(ii), we see that G is dihedral and 

hence has an elementary abelian subgroup of index 2. Finally, suppose ]Z[ = 4 

and let C and D be the subgroups of Z of order 2 different from G ~. Then G/C 

is dihedral of order 8 and hence has two elementary abelian subgroups of index 

2. Thus there exist distinct k, k ~ with A~, A 2, C_ C. Similarly, there exist distinct 
i, t ~ with 2 2 Ae, A t, c_ D. But there are only three subscripts, so {k, k'} A {/, l '} ¢ 0 

and if say k = ~, then A 2 C C N D  = 1. | 

CASE 2: Tile result holds if G is a 2-group. 

Proof: For convenience, let ~ denote the automorphism of A determined by the 

action of the nonidentity element of G/A. As we have observed above, Z = Z(G) 

is elementary abelian, and the quaternion group of order 8 is not involved in 
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G. Since A is abelian, it is clear tha t  (G \ A) 2 c_ Z. As usual, we proceed by  

induction on the order of G. 

Let B = ( a  C A[ a ~ ~- a - l ) .  Then  B is a subgroup of A containing Z, and 

indeed Z is precisely the set of elements of B of order < 2. In par t icular ,  if B 

is proper ly  larger than  Z,  then  there exists an element b E B with  Ibl = 4. We 

show in this case tha t  (G \ A) 2 = 1. Suppose, by way of contradict ion,  tha t  

there e x i s t s x E G \ A w i t h x  2 ¢ 1 .  Then  we h a v e l ¢ x  2 C Z a n d b  x - - b  a = b  -1 

wi th  1 ¢ b 2 E Z. Fur thermore ,  there is a homomorph ic  image 2 of Z in which 

x 2 and b 2 are identified. Thus,  there exists a homomorph ic  image (b, ~) of (b, x) 

such t ha t  b~ = b -1 and ~2 _ 5~2 ~ 1. But  this shows tha t  the quaternion group of 

order 8 is involved in G, a contradiction.  Thus  (G \ A) 2 -- 1 and G is dihedral.  

We can now assume tha t  B --- Z. Next  observe tha t  G r = {a~'a-l[ a E A )  

so dea r l y  G ~ c_ B = Z. Fur thermore ,  the m a p  A --~ G r given by a ~-~ a"a -1 is 

a h o m o m o r p h i s m  onto G ~ with kernel Z. Thus  A / Z  TM G ~ C Z and, since Z is 

e lementary  abelian, we conclude tha t  A 2 C_ Z and I A [ - - [ Z [  IG'[ _< [Zl 2. 

Suppose t ha t  [A I = IZ[ 2, and consider the endomorph i sm of A given by a ~-~ 

a~a with image I .  Clearly I C_ Z and, since the kernel of this m a p  is B -- Z, we 

have ]ZI 2 = IAI = IBI III = iZI III, so I = z .  Now i fw  C a \ A and if a E A, then 

(aw) 2 = aaaw 2 and it follows tha t  (G \ A) 2 = I w  2 = Z w  2 = Z.  In this si tuation,  

we claim tha t  A 2 = 1. Indeed, if this is not the case, let a E A with ]a I = 4. Since 

(G \ A) 2 = Z and a 2 E Z, we can choose y E G \ A with y2 = a 2. Fur thermore ,  

a ~ Z,  so the  c o m m u t a t o r  u = [y, a] is a nonident i ty  element  of G t C Z.  As 

above, Z has a homomorph ic  image identifying y2 with u, and hence (a, y} has 

a homomorph ic  image (5, ~)) satisfying 5 4 = 1 and 5 2 = ?)2 = [~), 5] ~ 1. In other  

words, (5, ~) is isomorphic to the quaternion group of order 8, a contradict ion.  

Thus  A 2 = 1, and we are done in this case. 

I t  now suffices to assume tha t  IA] > ]ZI 2 and, since IAI-- Ie ' l  IZl, we see tha t  

Z proper ly  contains G t. Fur thermore ,  if I G'] = 2, then IA : Z I = 2 and G / Z  is 

abel ian of type  (2,2). Thus  G has at  least three abel ian subgroups  of index 2, 

and Case 1 yields the result. Finally, if ]GtI _> 4, then since Z is proper ly  larger, 

there exist three different subgroups J1, J2, J3 of Z of order 2 tha t  are disjoint 

from G' .  Note tha t  (G/J i ) '  = G ' J i / J i  ~- G ~ has order _> 4 so, by Case 1, G / J i  

has a unique abel ian subgroup of index 2, namely  A / J i .  By induction, ei ther 

A / J i  has per iod 2 so A 2 C Ji or G / J i  is dihedral  in which case (G \ A) 2 C_ Ji.  

Since there are three different subscripts  and only two possible outcomes,  we see 

tha t  there exist i ¢ j with either A 2 c_ Ji M Jj = 1 or (G \ A )  2 c_ Ji M J j  = 1. 

Thus,  either A has period 2 or G is dihedral.  I 



Vol. 125, 2001 UNITARY UNITS IN GROUP ALGEBRAS 155 

CASE 3: The result holds in general. 

Proof: In view of Case 2, we can now assume tha t  G is not  a 2-group. In 

particular,  G has a nonidenti ty normal  abelian 2-complement B C_ A, and 

B N Z(G) = 1 since Z(G)  is an elementary abelian 2-group. It  follows tha t  G / A  

acts fixed point freely on B, and hence G / A  must  act  in a dihedral manner.  The 

goal here is to show tha t  G is a dihedral group or equivalently tha t  (G \ A) 2 = 1. 

If  this does not  occur,  then we can choose x E G \ A with x 2 ~ 1. As we observed 

before, x 2 E (G \ A) 2 C_ Z(G),  s o  ( x 2 )  2 : 1 and Ix[ = 4. Finally, let 1 ¢ b G B 

be any element and let Ibl = 7". Then r is odd and b x = b -1,  so (b,x} has a cyclic 

subgroup (bx 2} of order 2r and index 2. Furthermore,  (bx2) x = b - i x  2 = (bx2) -~ 

and (bx2) ~ = x 2 ~ 1. In  other  words, (b, x} is a quaternion group of order 4r, 

contradict ing Proposi t ion 2.4(ii), and this completes the proof. | 
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